
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5494529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endothelial Cell Receptors in Tissue Lipid Uptake and Metabolism. Circulation Research, 2021, 128, 433-450.	4.5	48
2	Autoregulation of insulin receptor signaling through MFGE8 and the αvβ5 integrin. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
3	Eruptive xanthoma model reveals endothelial cells internalize and metabolize chylomicrons, leading to extravascular triglyceride accumulation. Journal of Clinical Investigation, 2021, 131, .	8.2	14
4	Visceral obesity and insulin resistance associate with CD36 deletion in lymphatic endothelial cells. Nature Communications, 2021, 12, 3350.	12.8	66
5	Lipolytic enzymes and free fatty acids at the endothelial interface. Atherosclerosis, 2021, 329, 1-8.	0.8	12
6	Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ TÂcells in tumors. Immunity, 2021, 54, 1561-1577.e7.	14.3	260
7	CD36 maintains the gastric mucosa and associates with gastric disease. Communications Biology, 2021, 4, 1247.	4.4	8
8	A Single Bout of Premeal Resistance Exercise Improves Postprandial Glucose Metabolism in Obese Men with Prediabetes. Medicine and Science in Sports and Exercise, 2021, 53, 694-703.	0.4	9
9	A single bout of resistance exercise improves postprandial lipid metabolism in overweight/obese men with prediabetes. Diabetologia, 2020, 63, 611-623.	6.3	16
10	Lipokine 5-PAHSA Is Regulated by Adipose Triglyceride Lipase and Primes Adipocytes for De Novo Lipogenesis in Mice. Diabetes, 2020, 69, 300-312.	0.6	43
11	Regulation of lipophagy in NAFLD by cellular metabolism and CD36. Journal of Lipid Research, 2019, 60, 755-757.	4.2	14
12	Fatty acid 2-hydroxylation inhibits tumor growth and increases sensitivity to cisplatin in gastric cancer. EBioMedicine, 2019, 41, 256-267.	6.1	50
13	Intestinal CD36 and Other Key Proteins of Lipid Utilization: Role in Absorption and Gut Homeostasis. , 2018, 8, 493-507.		65
14	Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene, 2018, 37, 2285-2301.	5.9	332
15	Endothelial cell CD36 optimizes tissue fatty acid uptake. Journal of Clinical Investigation, 2018, 128, 4329-4342.	8.2	148
16	Transfer of Cell-Surface Antigens by Scavenger Receptor CD36 Promotes Thymic Regulatory T Cell Receptor Repertoire Development and Allo-tolerance. Immunity, 2018, 48, 923-936.e4.	14.3	54
17	Regulation of Insulin Receptor Pathway and Glucose Metabolism by CD36 Signaling. Diabetes, 2018, 67, 1272-1284.	0.6	41
18	CD36 Modulates Fasting and Preabsorptive Hormone and Bile Acid Levels. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1856-1866.	3.6	9

#	Article	IF	CITATIONS
19	HIV infection does not prevent the metabolic benefits of dietâ€induced weight loss in women with obesity. Obesity, 2017, 25, 682-688.	3.0	14
20	Variant in a common odorant-binding protein gene is associated with bitter sensitivity in people. Behavioural Brain Research, 2017, 329, 200-204.	2.2	24
21	The Liver as a Hub in Thermogenesis. Cell Metabolism, 2017, 26, 454-455.	16.2	30
22	Cd36 knockout mice are protected against lithogenic diet-induced gallstones. Journal of Lipid Research, 2017, 58, 1692-1701.	4.2	13
23	CD36 Deficiency Impairs the Small Intestinal Barrier and InducesÂSubclinical Inflammation in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 82-98.	4.5	42
24	Exome Genotyping Identifies Pleiotropic Variants Associated with Red Blood Cell Traits. American Journal of Human Genetics, 2016, 99, 8-21.	6.2	60
25	Higher chylomicron remnants and LDL particle numbers associate with CD36 SNPs and DNA methylation sites that reduce CD36. Journal of Lipid Research, 2016, 57, 2176-2184.	4.2	26
26	A Common CD36 Variant Influences Endothelial Function and Response to Treatment with Phosphodiesterase 5 Inhibition. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2751-2758.	3.6	18
27	Major role of adipocyte prostaglandin E2 in lipolysis-induced macrophage recruitment. Journal of Lipid Research, 2016, 57, 663-673.	4.2	54
28	Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model. PLoS ONE, 2016, 11, e0145626.	2.5	32
29	CD36 is indispensable for thermogenesis under conditions of fasting and cold stress. Biochemical and Biophysical Research Communications, 2015, 457, 520-525.	2.1	65
30	Perilipin 5–Driven Lipid Droplet Accumulation in Skeletal Muscle Stimulates the Expression of Fibroblast Growth Factor 21. Diabetes, 2015, 64, 2757-2768.	0.6	56
31	ASXL2 Regulates Glucose, Lipid, and Skeletal Homeostasis. Cell Reports, 2015, 11, 1625-1637.	6.4	55
32	Dietary Lipids Inform the Gut and Brain about Meal Arrival via CD36-Mediated Signal Transduction. Journal of Nutrition, 2015, 145, 2195-2200.	2.9	26
33	Regulation of AMPK Activation by CD36 Links Fatty Acid Uptake to Î ² -Oxidation. Diabetes, 2015, 64, 353-359.	0.6	163
34	Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nature Immunology, 2014, 15, 846-855.	14.5	856
35	Structure-Function of CD36 and Importance of Fatty Acid Signal Transduction in Fat Metabolism. Annual Review of Nutrition, 2014, 34, 281-303.	10.1	413
36	The Extracellular Matrix Protein MAGP1 Supports Thermogenesis and Protects Against Obesity and Diabetes Through Regulation of TGF-1 ² . Diabetes, 2014, 63, 1920-1932.	0.6	68

#	Article	IF	CITATIONS
37	Sulfo-N-succinimidyl Oleate (SSO) Inhibits Fatty Acid Uptake and Signaling for Intracellular Calcium via Binding CD36 Lysine 164. Journal of Biological Chemistry, 2013, 288, 15547-15555.	3.4	145
38	CD36â€dependent signaling mediates fatty acidâ€induced gut release of secretin and cholecystokinin. FASEB Journal, 2013, 27, 1191-1202.	0.5	90
39	Three Dimensional Structure Prediction of Fatty Acid Binding Site on Human Transmembrane Receptor CD36. Bioinformatics and Biology Insights, 2013, 7, BBI.S12276.	2.0	17
40	CD36 level and trafficking are determinants of lipolysis in adipocytes. FASEB Journal, 2012, 26, 4733-4742.	0.5	60
41	Moving Beyond "Good Fat, Bad Fat― The Complex Roles of Dietary Lipids in Cellular Function and Health. Advances in Nutrition, 2012, 3, 60-68.	6.4	4
42	The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. Journal of Lipid Research, 2012, 53, 561-566.	4.2	245
43	Role of the Gut in Lipid Homeostasis. Physiological Reviews, 2012, 92, 1061-1085.	28.8	278
44	Luminal Lipid Regulates CD36 Levels and Downstream Signaling to Stimulate Chylomicron Synthesis. Journal of Biological Chemistry, 2011, 286, 25201-25210.	3.4	110
45	Parkin reinvents itself to regulate fatty acid metabolism by tagging CD36. Journal of Clinical Investigation, 2011, 121, 3389-3392.	8.2	18
46	Chylomicron- and VLDL-derived Lipids Enter the Heart through Different Pathways. Journal of Biological Chemistry, 2010, 285, 37976-37986.	3.4	98
47	Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways. Journal of Lipid Research, 2009, 50, S86-S90.	4.2	326
48	CD36-dependent Regulation of Muscle FoxO1 and PDK4 in the PPARδ/β-mediated Adaptation to Metabolic Stress. Journal of Biological Chemistry, 2008, 283, 14317-14326.	3.4	108
49	Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Human Molecular Genetics, 2008, 17, 1695-1704.	2.9	164
50	CD36-Facilitated Fatty Acid Uptake Inhibits Leptin Production and Signaling in Adipose Tissue. Diabetes, 2007, 56, 1872-1880.	0.6	100
51	CD36 Is Important for Chylomicron Formation and Secretion and May Mediate Cholesterol Uptake in the Proximal Intestine. Gastroenterology, 2006, 131, 1197-1207.	1.3	160
52	CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. Journal of Clinical Investigation, 2005, 115, 1290-1297.	8.2	203
53	CD36 may determine our desire for dietary fats. Journal of Clinical Investigation, 2005, 115, 2965-2967.	8.2	74
54	CD36 in Myocytes Channels Fatty Acids to a Lipase-Accessible Triglyceride Pool That Is Related to Cell Lipid and Insulin Responsiveness. Diabetes, 2004, 53, 2209-2216.	0.6	84

#	Article	IF	CITATIONS
55	A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Human Molecular Genetics, 2004, 13, 2197-2205.	2.9	161
56	Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. Journal of Clinical Investigation, 2002, 109, 1381-1389.	8.2	215
57	Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. Journal of Clinical Investigation, 2002, 109, 1381-1389.	8.2	161
58	Defective Uptake and Utilization of Long Chain Fatty Acids in Muscle and Adipose Tissues of CD36 Knockout Mice. Journal of Biological Chemistry, 2000, 275, 32523-32529.	3.4	586
59	A Null Mutation in Murine CD36 Reveals an Important Role in Fatty Acid and Lipoprotein Metabolism. Journal of Biological Chemistry, 1999, 274, 19055-19062.	3.4	680
60	Muscle-specific Overexpression of FAT/CD36 Enhances Fatty Acid Oxidation by Contracting Muscle, Reduces Plasma Triglycerides and Fatty Acids, and Increases Plasma Glucose and Insulin. Journal of Biological Chemistry, 1999, 274, 26761-26766.	3.4	315
61	Membrane transport of long-chain fatty acids: evidence for a facilitated process. Journal of Lipid Research, 1998, 39, 2309-2318.	4.2	275
62	Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: Isolation and ammo-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. Journal of Membrane Biology, 1993, 133, 43-9.	2.1	186
63	Transport of fatty acid in the isolated rat adipocyte and in differentiating preadipose cells. Biochemical Society Transactions, 1990, 18, 1130-1132.	3.4	3
64	Protein Phosphorylation in Intact Bovine Epididymal Spermatozoa: Identification of the Type II Regulatory Subunit of Cyclic Adenosine 3′,5′-Monophosphate- Dependent Protein Kinase as an Endogenous Phosphoprotein1. Biology of Reproduction, 1987, 37, 171-180.	2.7	30