John P Aris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5494518/publications.pdf

Version: 2024-02-01

29	5,098	361413	477307
papers	citations	h-index	g-index
29	29	29	11988
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	New insights into the role of mitochondria in aging: mitochondrial dynamics and more. Journal of Cell Science, 2010, 123, 2533-2542.	2.0	448
3	Resurrecting ancestral alcohol dehydrogenases from yeast. Nature Genetics, 2005, 37, 630-635.	21.4	290
4	Autophagy and amino acid homeostasis are required for chronological longevity in <i>Saccharomyces cerevisiae</i> . Aging Cell, 2009, 8, 353-369.	6.7	213
5	Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy, 2009, 5, 847-849.	9.1	174
6	Nop5p Is a Small Nucleolar Ribonucleoprotein Component Required for Pre-18 S rRNA Processing in Yeast. Journal of Biological Chemistry, 1998, 273, 16453-16463.	3.4	123
7	Transcription Factor UAF, Expansion and Contraction of Ribosomal DNA (rDNA) Repeats, and RNA Polymerase Switch in Transcription of Yeast rDNA. Molecular and Cellular Biology, 1999, 19, 8559-8569.	2.3	76
8	[53] Isolation of yeast nuclei. Methods in Enzymology, 1991, 194, 735-749.	1.0	71
9	The Amino-terminal Domain of the E Subunit of Vacuolar H+-ATPase (V-ATPase) Interacts with the H Subunit and Is Required for V-ATPase Function. Journal of Biological Chemistry, 2002, 277, 38409-38415.	3.4	68
10	Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast. Experimental Gerontology, 2013, 48, 1107-1119.	2.8	67
11	Plasmid Accumulation Reduces Life Span in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003, 278, 41607-41617.	3.4	58
12	NCL1, a novel gene for a non-essential nuclear protein in Saccharomyces cerevisiae. Gene, 1998, 220, 109-117.	2.2	54
13	Saccharomyces cerevisiae Mod5p-II Contains Sequences Antagonistic for Nuclear and Cytosolic Locations. Genetics, 1999, 151, 57-75.	2.9	51
14	Homocitrate Synthase Is Located in the Nucleus in the YeastSaccharomyces cerevisiae. Journal of Biological Chemistry, 1997, 272, 10839-10846.	3.4	43
15	The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry. Physics in Medicine and Biology, 2011, 56, 4839-4879.	3.0	32
16	Role of Histone Deacetylase Rpd3 in Regulating rRNA Gene Transcription and Nucleolar Structure in Yeast. Molecular and Cellular Biology, 2006, 26, 3889-3901.	2.3	30
17	Acetyl-coenzyme A synthetase 2 is a nuclear protein required for replicative longevity in SaccharomycesÂcerevisiae. Molecular and Cellular Biochemistry, 2010, 333, 99-108.	3.1	30
18	An image-based skeletal tissue model for the ICRP reference newborn. Physics in Medicine and Biology, 2009, 54, 4497-4531.	3.0	25

#	Article	IF	CITATIONS
19	Comparative Spatial Localization of Protein-A-Tagged and Authentic Yeast Nuclear Pore Complex Proteins by Immunogold Electron Microscopy. Journal of Structural Biology, 2000, 129, 295-305.	2.8	22
20	Loc1p is required for efficient assembly and nuclear export of the 60S ribosomal subunit. Molecular Genetics and Genomics, 2006, 276, 369-377.	2.1	21
21	A moonlighting metabolic protein influences repair at DNA double-stranded breaks. Nucleic Acids Research, 2015, 43, 1646-1658.	14.5	15
22	2-micron circle plasmids do not reduce yeast life span. FEMS Microbiology Letters, 2005, 250, 245-251.	1.8	14
23	Expression and subcellular localization of a membrane protein related to Hsp30p in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1463, 477-482.	2.6	11
24	Impaired Ribosome Biogenesis Disrupts the Integration between Morphogenesis and Nuclear Duplication during the Germination of <i>Aspergillus fumigatus</i> Lukaryotic Cell, 2008, 7, 575-583.	3.4	11
25	Amino Acid Homeostasis and Chronological Longevity in Saccharomyces cerevisiae. Sub-Cellular Biochemistry, 2011, 57, 161-186.	2.4	8
26	Multiple Growth Factor Induction of a Murine Early Response Gene That Complements a Lethal Defect in Yeast Ribosome Biogenesis. Journal of Biological Chemistry, 2000, 275, 13835-13841.	3.4	7
27	Gingival RAGE Expression in Calorie-Restricted Versusad Libitum–Fed Rats. Journal of Periodontology, 2010, 81, 1481-1487.	3.4	6
28	The enduring legacy of Marie Curie: impacts of radium in 21st century radiological and medical sciences. International Journal of Radiation Biology, 2022, 98, 267-275.	1.8	5
29	Dosimetric considerations of 99mTc-MDP uptake within the epiphyseal plates of the long bones of pediatric patients. Physics in Medicine and Biology, 2020, 65, 235025.	3.0	3