
Cole W Matson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5493480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced biotransformation of polycyclic aromatic hydrocarbons (PAHs) in pollution-adapted Gulf killifish (Fundulus grandis). Science of the Total Environment, 2022, 806, 150854.	8.0	3
2	In vitro-in vivo biotransformation and phase I metabolite profiling of benzo[a]pyrene in Gulf killifish (Fundulus grandis) populations with different exposure histories. Aquatic Toxicology, 2022, 243, 106057.	4.0	4
3	A comprehensive petrochemical vulnerability index for marine fishes in the Gulf of Mexico. Science of the Total Environment, 2022, 820, 152892.	8.0	6
4	A multi-taxonomic framework for assessing relative petrochemical vulnerability of marine biodiversity in the Gulf of Mexico. Science of the Total Environment, 2021, 763, 142986.	8.0	15
5	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	4.3	32
6	Oxidative Potential of Chemical Mixtures Extracted from Contaminated Galveston Bay, TX Seafood Using a Human Cell Co-culture Model. Archives of Environmental Contamination and Toxicology, 2020, 78, 149-162.	4.1	0
7	Copper and Gold Nanoparticles Increase Nutrient Excretion Rates of Primary Consumers. Environmental Science & Technology, 2020, 54, 10170-10180.	10.0	10
8	Periphyton, bivalves and fish differentially accumulate select pharmaceuticals in effluent-dependent stream mesocosms. Science of the Total Environment, 2020, 745, 140882.	8.0	14
9	Legacy and Contaminants of Emerging Concern in Tree Swallows Along an Agricultural to Industrial Gradient: Maumee River, Ohio. Environmental Toxicology and Chemistry, 2020, 39, 1936-1952.	4.3	10
10	Differential Reactivity of Copper- and Gold-Based Nanomaterials Controls Their Seasonal Biogeochemical Cycling and Fate in a Freshwater Wetland Mesocosm. Environmental Science & Technology, 2020, 54, 1533-1544.	10.0	29
11	Cetacean genome size diversity. Marine Mammal Science, 2019, 35, 1133-1140.	1.8	1
12	Fundamental and applied pursuits in evolutionary toxicology are mutually beneficial: A reply to Hahn (2018). Evolutionary Applications, 2019, 12, 353-353.	3.1	0
13	Influence of salinity and pH on bioconcentration of ionizable pharmaceuticals by the gulf killifish, Fundulus grandis. Chemosphere, 2019, 229, 434-442.	8.2	29
14	Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science, 2019, 364, 455-457.	12.6	184
15	Titanium dioxide nanoparticle exposure reduces algal biomass and alters algal assemblage composition in wastewater effluent-dominated stream mesocosms. Science of the Total Environment, 2018, 626, 357-365.	8.0	25
16	Validation of a Sulfuric Acid Digestion Method for Inductively Coupled Plasma Mass Spectrometry Quantification of TiO2 Nanoparticles. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 809-814.	2.7	3
17	Polychlorinated biphenyl (PCB) contamination in Galveston Bay, Texas: Comparing concentrations and profiles in sediments, passive samplers, and fish. Environmental Pollution, 2018, 236, 609-618.	7.5	38

Adaptation in Polluted Waters: Lessons from Killifish. , 2018, , 355-375.

#	Article	IF	CITATIONS
19	Size-Based Differential Transport, Uptake, and Mass Distribution of Ceria (CeO ₂) Nanoparticles in Wetland Mesocosms. Environmental Science & Technology, 2018, 52, 9768-9776.	10.0	52
20	Dosing, Not the Dose: Comparing Chronic and Pulsed Silver Nanoparticle Exposures. Environmental Science & Technology, 2018, 52, 10048-10056.	10.0	24
21	Relative Contributions of Copper Oxide Nanoparticles and Dissolved Copper to Cu Uptake Kinetics of Gulf Killifish (<i>Fundulus grandis</i>) Embryos. Environmental Science & Technology, 2017, 51, 1395-1404.	10.0	37
22	Evolutionary toxicology in an omics world. Evolutionary Applications, 2017, 10, 752-761.	3.1	26
23	Induced pesticide tolerance results from detoxification pathway priming. Environmental Pollution, 2017, 224, 615-621.	7.5	7
24	Evolutionary toxicology: Toward a unified understanding of life's response to toxic chemicals. Evolutionary Applications, 2017, 10, 745-751.	3.1	48
25	EROD activity, chromosomal damage, and oxidative stress in response to contaminants exposure in tree swallow (Tachycineta bicolor) nestlings from Great Lakes Areas of Concern. Ecotoxicology, 2017, 26, 1392-1407.	2.4	17
26	A non-destructive BFCOD assay for in vivo measurement of cytochrome P450 3A (CYP3A) enzyme activity in fish embryos and larvae. Ecotoxicology, 2017, 26, 809-819.	2.4	8
27	Silver toxicity across salinity gradients: the role of dissolved silver chloride species (AgCl x) in Atlantic killifish (Fundulus heteroclitus) and medaka (Oryzias latipes) early life-stage toxicity. Ecotoxicology, 2016, 25, 1105-1118.	2.4	8
28	Evolutionary toxicology: Meta-analysis of evolutionary events in response to chemical stressors. Ecotoxicology, 2016, 25, 1858-1866.	2.4	25
29	Press or pulse exposures determine the environmental fate of cerium nanoparticles in stream mesocosms. Environmental Toxicology and Chemistry, 2016, 35, 1213-1223.	4.3	22
30	Cross-resistance in Gulf killifish (Fundulus grandis) populations resistant to dioxin-like compounds. Aquatic Toxicology, 2016, 175, 222-231.	4.0	22
31	Exploring Educators' Environmental Education Attitudes and Efficacy: Insights Cleaned from a Texas Wetland Academy. International Journal of Science Education, Part B: Communication and Public Engagement, 2016, 6, 303-324.	1.5	4
32	Ecotoxicity of bare and coated silver nanoparticles in the aquatic midge, <i>Chironomus riparius</i> . Environmental Toxicology and Chemistry, 2015, 34, 2023-2032.	4.3	27
33	In situ effects of pesticides on amphibians in the Sierra Nevada. Ecotoxicology, 2015, 24, 262-278.	2.4	24
34	Insights into the Evolution of Longevity from the Bowhead Whale Genome. Cell Reports, 2015, 10, 112-122.	6.4	280
35	Chromosomal damage and EROD induction in tree swallows (Tachycineta bicolor) along the Upper Mississippi River, Minnesota, USA. Ecotoxicology, 2015, 24, 1028-1039.	2.4	4
36	Silver nanoparticle toxicity to Atlantic killifish (<i>Fundulus heteroclitus</i>) and <i>Caenorhabditis elegans</i> : A comparison of mesocosm, microcosm, and conventional laboratory studies. Environmental Toxicology and Chemistry, 2015, 34, 275-282.	4.3	29

#	Article	IF	CITATIONS
37	Evolutionary Toxicology: Population Adaptation in Response to Anthropogenic Pollution. , 2015, , 247-277.		11
38	Evolved resistance to PCB- and PAH-induced cardiac teratogenesis, and reduced CYP1A activity in Gulf killifish (Fundulus grandis) populations from the Houston Ship Channel, Texas. Aquatic Toxicology, 2014, 150, 210-219.	4.0	62
39	Dietary CdSe/ZnS quantum dot exposure in estuarine fish: Bioavailability, oxidative stress responses, reproduction, and maternal transfer. Aquatic Toxicology, 2014, 148, 27-39.	4.0	48
40	Emerging Contaminant or an Old Toxin in Disguise? Silver Nanoparticle Impacts on Ecosystems. Environmental Science & Technology, 2014, 48, 5229-5236.	10.0	138
41	Salinity-dependent silver nanoparticle uptake and transformation by Atlantic killifish (<i>Fundulus) Tj ETQq1 1 (</i>).784314 r 3.0	gBT_/Overloc
42	Long-Term Transformation and Fate of Manufactured Ag Nanoparticles in a Simulated Large Scale Freshwater Emergent Wetland. Environmental Science & Technology, 2012, 46, 7027-7036.	10.0	351
43	Biotic and Abiotic Interactions in Aquatic Microcosms Determine Fate and Toxicity of Ag Nanoparticles: Part 2–Toxicity and Ag Speciation. Environmental Science & Technology, 2012, 46, 6925-6933.	10.0	128
44	Biotic and Abiotic Interactions in Aquatic Microcosms Determine Fate and Toxicity of Ag Nanoparticles. Part 1. Aggregation and Dissolution. Environmental Science & Technology, 2012, 46, 6915-6924.	10.0	173
45	Meditations on the Ubiquity and Mutability of Nano-Sized Materials in the Environment. ACS Nano, 2011, 5, 8466-8470.	14.6	77
46	Evolutionary toxicology: contaminant-induced genetic mutations in mosquitofish from Sumgayit, Azerbaijan. Ecotoxicology, 2011, 20, 365-376.	2.4	18
47	Genotoxicity in Atlantic killifish (Fundulus heteroclitus) from a PAH-contaminated Superfund site on the Elizabeth River, Virginia. Ecotoxicology, 2011, 20, 1890-1899.	2.4	20
48	Ultraviolet treatment and biodegradation of dibenzothiophene: Identification and toxicity of products. Environmental Toxicology and Chemistry, 2010, 29, 2409-2416.	4.3	16
49	Characterization of the recalcitrant CYP1 phenotype found in Atlantic killifish (Fundulus) Tj ETQq1 1 0.784314	rgBT /Over 4.0	lock 10 Tf 50
50	AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (Fundulus heteroclitus). Aquatic Toxicology, 2010, 99, 232-240.	4.0	106
51	Population Genetics of Bowhead Whales (<i>Baleana mysticetus</i>) in the Western Arctic. Arctic, 2010, 63, .	0.4	13
52	Potential effects of environmental contaminants on P450 aromatase activity and DNA damage in swallows from the Rio Grande and Somerville, Texas. Ecotoxicology, 2009, 18, 15-21.	2.4	3
53	Wildlife toxicology: biomarkers of genotoxic exposures at a hazardous waste site. Ecotoxicology, 2009, 18, 886-898.	2.4	27
54	Assessing substitution patterns, rates and homoplasy at HVRI of Steller sea lions, <i>Eumetopias jubatus</i> . Molecular Ecology, 2009, 18, 3379-3393.	3.9	26

#	Article	IF	CITATIONS
55	Development of the morpholino gene knockdown technique in Fundulus heteroclitus: A tool for studying molecular mechanisms in an established environmental model. Aquatic Toxicology, 2008, 87, 289-295.	4.0	47
56	Effects of methylmercury exposure on glutathione metabolism, oxidative stress, and chromosomal damage in captive-reared common loon (Gavia immer) chicks. Environmental Pollution, 2008, 156, 732-738.	7.5	40
57	In situ biomonitoring of PAH-contaminated sediments using juvenile coho salmon (Oncorhynchus) Tj ETQq1 1 0	.784314 rg 6.0	gBT_/Overlo <mark>ck</mark>
58	Fluoranthene, but not benzo[a]pyrene, interacts with hypoxia resulting in pericardial effusion and lordosis in developing zebrafish. Chemosphere, 2008, 74, 149-154.	8.2	59
59	Synergistic induction of AHR regulated genes in developmental toxicity from co-exposure to two model PAHs in zebrafish. Aquatic Toxicology, 2007, 85, 241-250.	4.0	98
60	Contaminant Exposure and Biomarker Response in Embryos of Black-crowned Night-herons (Nycticorax nycticorax) Nesting near Lake Calumet, Illinois. Journal of Great Lakes Research, 2007, 33, 791-805.	1.9	9
61	Water level management and contaminant exposure to tree swallows nesting on the Upper Mississippi Riverâ€. Environmental Monitoring and Assessment, 2007, 133, 335-345.	2.7	18
62	Deep genetic subdivision within a continuously distributed and highly vagile marine mammal, the Steller's sea lion (Eumetopias jubatus). Molecular Ecology, 2006, 15, 2821-2832.	3.9	75
63	TOXICITY OF GLYPHOSATE AS GLYPRO® AND LI700 TO RED-EARED SLIDER (TRACHEMYS SCRIPTA ELEGANS) EMBRYOS AND EARLY HATCHLINGS. Environmental Toxicology and Chemistry, 2006, 25, 2768.	4.3	48
64	BIOMARKERS OF EXPOSURE AND EFFECTS OF ENVIRONMENTAL CONTAMINANTS ON SWALLOWS NESTING ALONG THE RIO GRANDE, TEXAS, USA. Environmental Toxicology and Chemistry, 2006, 25, 1574.	4.3	12
65	Contaminant Exposure of Barn Swallows Nesting on Bayou D'Inde, Calcasieu Estuary, Louisiana, USA. Environmental Monitoring and Assessment, 2006, 121, 543-560.	2.7	10
66	Trace Element Concentrations and Bioindicator Responses in Tree Swallows from Northwestern Minnesota. Environmental Monitoring and Assessment, 2006, 118, 247-266.	2.7	33
67	Evolutionary Toxicology: Population-Level Effects of Chronic Contaminant Exposure on the Marsh Frogs (Rana ridibunda) of Azerbaijan. Environmental Health Perspectives, 2006, 114, 547-552.	6.0	58
68	EXPOSURE AND EFFECTS OF 2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN IN TREE SWALLOWS (TACHYCINETA) Tj Toxicology and Chemistry, 2005, 24, 93.	ETQq0 0 0 4.3) rgBT /Overlc 60
69	EFFECTS OF CONTAMINANT EXPOSURE ON REPRODUCTIVE SUCCESS OF OSPREYS (PANDION HALIAETUS) NESTING IN DELAWARE RIVER AND BAY, USA. Environmental Toxicology and Chemistry, 2005, 24, 617.	4.3	61
70	PATTERNS OF GENOTOXICITY AND CONTAMINANT EXPOSURE: EVIDENCE OF GENOMIC INSTABILITY IN THE MARSH FROGS (RANA RIDIBUNDA) OF SUMGAYIT, AZERBAIJAN. Environmental Toxicology and Chemistry, 2005, 24, 2055.	4.3	20
71	Chromosomal Damage in Two Species of Aquatic Turtles (Emys orbicularis and Mauremys caspica) Inhabiting Contaminated Sites in Azerbaijan. Ecotoxicology, 2005, 14, 513-525.	2.4	39
72	VARIATION OF MITOCHONDRIAL CONTROL REGION SEQUENCES OF STELLER SEA LIONS: THE THREE-STOCK HYPOTHESIS. Journal of Mammalogy, 2005, 86, 1075-1084.	1.3	45

#	Article	IF	CITATIONS
73	Evidence of chromosomal damage in common eiders (Somateria mollissima) from the Baltic Sea. Marine Pollution Bulletin, 2004, 49, 1066-1071.	5.0	22
74	Editorial: The Unknown Environmental Tragedy in Sumgayit, Azerbaijan. Ecotoxicology, 2003, 12, 505-508.	2.4	14
75	DNA Sequence Variation in the Mitochondrial Control Region of Red-Backed Voles (Clethrionomys). Molecular Biology and Evolution, 2001, 18, 1494-1501.	8.9	39
76	Characterization of polymorphic microsatellite loci from the two endemic genera of Madagascan Boids, Acrantophis and Sanzinia. Molecular Ecology Notes, 2001, 1, 41-43.	1.7	1
77	Consequences of polluted environments on population structure: the bank vole (Clethrionomys) Tj ETQq1 1 0.784	4314 rgBT 2.4	/Overlock
78	Genetic diversity of <i>Clethrionomys glareolus</i> populations from highly contaminated sites in the Chornobyl region, Ukraine. Environmental Toxicology and Chemistry, 2000, 19, 2130-2135.	4.3	42
79	GENETIC DIVERSITY OF CLETHRIONOMYS GLAREOLUS POPULATIONS FROM HIGHLY CONTAMINATED SITES IN THE CHORNOBYL REGION, UKRAINE. Environmental Toxicology and Chemistry, 2000, 19, 2130.	4.3	26