Johann Helmut Brandstätter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5491438/publications.pdf

Version: 2024-02-01

60 papers 4,490 citations

147801 31 h-index 56 g-index

60 all docs

60 does citations

60 times ranked

3320 citing authors

#	Article	IF	Citations
1	The Presynaptic Active Zone Protein Bassoon Is Essential for Photoreceptor Ribbon Synapse Formation in the Retina. Neuron, 2003, 37, 775-786.	8.1	395
2	Loss of Postsynaptic GABA _A Receptor Clustering in Gephyrin-Deficient Mice. Journal of Neuroscience, 1999, 19, 9289-9297.	3.6	392
3	Glycine and GABA receptors in the mammalian retina. Vision Research, 1998, 38, 1411-1430.	1.4	237
4	Immunocytochemical Localization of the GABA _C Receptor ÏÂSubunits in the Mammalian Retina. Journal of Neuroscience, 1996, 16, 4479-4490.	3.6	231
5	Diversity of glutamate receptors in the mammalian retina. Vision Research, 1998, 38, 1385-1397.	1.4	229
6	Structurally and functionally unique complexins at retinal ribbon synapses. Journal of Cell Biology, 2005, 169, 669-680.	5.2	176
7	Expression of GABA Receptor 11 and 12 Subunits in the Retina and Brain of the Rat. European Journal of Neuroscience, 1995, 7, 1495-1501.	2.6	162
8	Synaptic clustering of GABACreceptor Ïâ€subunits in the rat retina. European Journal of Neuroscience, 1998, 10, 115-127.	2.6	150
9	Differential expression of the presynaptic cytomatrix protein bassoon among ribbon synapses in the mammalian retina. European Journal of Neuroscience, 1999, 11, 3683-3693.	2.6	145
10	Gephyrin-Independent Clustering of Postsynaptic GABAA Receptor Subtypes. Molecular and Cellular Neurosciences, 2001, 17, 973-982.	2.2	138
11	Selective Synaptic Distribution of Kainate Receptor Subunits in the Two Plexiform Layers of the Rat Retina. Journal of Neuroscience, 1997, 17, 9298-9307.	3.6	136
12	Compartmental Localization of a Metabotropic Glutamate Receptor (mGluR7): Two Different Active Sites at a Retinal Synapse. Journal of Neuroscience, 1996, 16, 4749-4756.	3.6	133
13	Localization of the presynaptic cytomatrix protein Piccolo at ribbon and conventional synapses in the rat retina: Comparison with Bassoon. Journal of Comparative Neurology, 2001, 439, 224-234.	1.6	131
14	Ribbon synapses of the retina. Cell and Tissue Research, 2006, 326, 339-346.	2.9	127
15	The Metabotropic GABAB Receptor Directly Interacts with the Activating Transcription Factor 4. Journal of Biological Chemistry, 2000, 275, 35185-35191.	3.4	114
16	Group I Metabotropic Glutamate Receptors mGluR1 \hat{l} \pm and mGluR5a: Localization in Both Synaptic Layers of the Rat Retina. Journal of Neuroscience, 1997, 17, 2200-2211.	3.6	110
17	Early steps in the assembly of photoreceptor ribbon synapses in the mouse retina: The involvement of precursor spheres. Journal of Comparative Neurology, 2009, 512, 814-824.	1.6	101
18	Group II and Group III Metabotropic Glutamate Receptors in the Rat Retina: Distributions and Developmental Expression Patterns. European Journal of Neuroscience, 1996, 8, 2177-2187.	2.6	96

#	Article	IF	Citations
19	Effects of Presynaptic Mutations on a Postsynaptic Cacna1s Calcium Channel Colocalized with mGluR6 at Mouse Photoreceptor Ribbon Synapses. , 2009, 50, 505.		95
20	Presynaptic and postsynaptic localization of GABAB receptors in neurons of the rat retina. European Journal of Neuroscience, 1998, 10, 1446-1456.	2.6	88
21	Immunocytochemical localization of the GABAC receptor? subunits in the cat, goldfish, and chicken retina., 1997, 380, 520-532.		87
22	Type 4 OFF cone bipolar cells of the mouse retina express calsenilin and contact cones as well as rods. Journal of Comparative Neurology, 2008, 507, 1087-1101.	1.6	71
23	Aberrant function and structure of retinal ribbon synapses in the absence of complexin 3 and complexin 4. Journal of Cell Science, 2009, 122, 1352-1361.	2.0	71
24	Structural and functional remodeling in the retina of a mouse with a photoreceptor synaptopathy: plasticity in the rod and degeneration in the cone system. European Journal of Neuroscience, 2007, 26, 2506-2515.	2.6	65
25	Munc13-Independent Vesicle Priming at Mouse Photoreceptor Ribbon Synapses. Journal of Neuroscience, 2012, 32, 8040-8052.	3.6	62
26	SNAP25 expression in mammalian retinal horizontal cells. Journal of Comparative Neurology, 2011, 519, 972-988.	1.6	54
27	ZIP3, a New Splice Variant of the PKC-ζ-interacting Protein Family, Binds to GABAC Receptors, PKC-ζ, and Kvβ2. Journal of Biological Chemistry, 2003, 278, 6128-6135.	3.4	53
28	Photoreceptor Degeneration in Two Mouse Models for Congenital Stationary Night Blindness Type 2. PLoS ONE, 2014, 9, e86769.	2.5	53
29	Localization of glutamate receptors at a complex synapse. Cell and Tissue Research, 2001, 303, 1-14.	2.9	49
30	The postsynaptic scaffold proteins ProSAP1/Shank2 and Homer1 are associated with glutamate receptor complexes at rat retinal synapses. Journal of Comparative Neurology, 2004, 475, 551-563.	1.6	40
31	The Centrosomal Protein Pericentrin Identified at the Basal Body Complex of the Connecting Cilium in Mouse Photoreceptors. PLoS ONE, 2011, 6, e26496.	2.5	40
32	Group I Metabotropic Glutamate Receptors Bind to Protein Phosphatase 1C. Journal of Biological Chemistry, 2003, 278, 50682-50690.	3.4	38
33	Pre- and Postsynaptic Sites of Action of mGluR8a in the mammalian retina. Investigative Ophthalmology and Visual Science, 2002, 43, 1933-40.	3.3	34
34	Stability of active zone components at the photoreceptor ribbon complex. Molecular Vision, 2010, 16, 2690-700.	1.1	33
35	Development of glutamatergic synapses in the rat retina: The postnatal expression of ionotropic glutamate receptor subunits. Visual Neuroscience, 2002, 19, 1-13.	1.0	31
36	Robust syntaxin-4 immunoreactivity in mammalian horizontal cell processes. Visual Neuroscience, 2007, 24, 489-502.	1.0	31

#	Article	IF	Citations
37	DYNC2LI1 mutations broaden the clinical spectrum of dynein-2 defects. Scientific Reports, 2015, 5, 11649.	3.3	28
38	Functional Roles of Complexin 3 and Complexin 4 at Mouse Photoreceptor Ribbon Synapses. Journal of Neuroscience, 2016, 36, 6651-6667.	3.6	28
39	A Multiple Piccolino-RIBEYE Interaction Supports Plate-Shaped Synaptic Ribbons in Retinal Neurons. Journal of Neuroscience, 2019, 39, 2606-2619.	3.6	27
40	Analysis of RIM Expression and Function at Mouse Photoreceptor Ribbon Synapses. Journal of Neuroscience, 2017, 37, 7848-7863.	3.6	24
41	Absence of functional active zone protein Bassoon affects assembly and transport of ribbon precursors during early steps of photoreceptor synaptogenesis. European Journal of Cell Biology, 2010, 89, 468-475.	3.6	23
42	Evidence for a Clathrin-independent mode of endocytosis at a continuously active sensory synapse. Frontiers in Cellular Neuroscience, 2014, 8, 60.	3.7	23
43	Glutamate receptors in the retina: The molecular substrate for visual signal processing. Current Eye Research, 2002, 25, 327-331.	1.5	21
44	Strain differences in illuminationâ€dependent structural changes at mouse photoreceptor ribbon synapses. Journal of Comparative Neurology, 2013, 521, 69-78.	1.6	17
45	PNUTS forms a trimeric protein complex with GABAC receptors and protein phosphatase 1. Molecular and Cellular Neurosciences, 2008, 37, 808-819.	2.2	16
46	GlyT1 determines the glycinergic phenotype of amacrine cells in the mouse retina. Brain Structure and Function, 2018, 223, 3251-3266.	2.3	14
47	Identification and Characterisation of Simiate, a Novel Protein Linked to the Fragile X Syndrome. PLoS ONE, 2013, 8, e83007.	2.5	10
48	The BEACH Protein LRBA Promotes the Localization of the Heterotrimeric G-protein Golf to Olfactory Cilia. Scientific Reports, 2017, 7, 8409.	3.3	10
49	Genetic disruption of bassoon in two mutant mouse lines causes divergent retinal phenotypes. FASEB Journal, 2021, 35, e21520.	0.5	9
50	Functional analyses of Pericentrin and Syne-2/Nesprin-2 interaction in ciliogenesis. Journal of Cell Science, 2018, 131, .	2.0	7
51	Lack of a Retinal Phenotype in a Syne-2/Nesprin-2 Knockout Mouse Model. Cells, 2019, 8, 1238.	4.1	6
52	The absence of functional bassoon at cone photoreceptor ribbon synapses affects signal transmission at Off cone bipolar cell contacts in mouse retina. Acta Physiologica, 2021, 231, e13584.	3.8	6
53	Functional and Structural Development of Mouse Cone Photoreceptor Ribbon Synapses., 2022, 63, 21.		5
54	T-Type Ca ²⁺ Channels Boost Neurotransmission in Mammalian Cone Photoreceptors. Journal of Neuroscience, 2022, 42, 6325-6343.	3.6	5

#	Article	IF	Citations
55	Special characteristics of the transcription and splicing machinery in photoreceptor cells of the mammalian retina. Cell and Tissue Research, 2015, 362, 281-294.	2.9	4
56	Heterogeneous Presynaptic Distribution of Munc13 Isoforms at Retinal Synapses and Identification of an Unconventional Bipolar Cell Type with Dual Expression of Munc13 Isoforms: A Study Using Munc13-EXFP Knock-in Mice. International Journal of Molecular Sciences, 2020, 21, 7848.	4.1	3
57	Angiotensin-Receptor-Associated Protein Modulates Ca2+ Signals in Photoreceptor and Mossy Fiber cells. Scientific Reports, 2019, 9, 19622.	3.3	2
58	Analysis of tetrodotoxin-sensitive sodium and low voltage-activated calcium channels in developing mouse retinal horizontal cells. Experimental Eye Research, 2020, 195, 108028.	2.6	2
59	Studying Protein Function and the Role of Altered Protein Expression by Antibody Interference and Three-dimensional Reconstructions. Journal of Visualized Experiments, 2016, , .	0.3	1
60	Cell Types and Synapses Expressing the SNARE Complex Regulating Proteins Complexin 1 and Complexin 2 in Mammalian Retina. International Journal of Molecular Sciences, 2021, 22, 8131.	4.1	1