
Shuqi Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5491294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A deep investigation into the adipogenesis mechanism: Profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/l²-catenin signaling pathway. BMC Genomics, 2010, 11, 320.	2.8	190
2	Understanding PRRSV Infection in Porcine Lung Based on Genome-Wide Transcriptome Response Identified by Deep Sequencing. PLoS ONE, 2010, 5, e11377.	2.5	119
3	Antiviral Strategies against PRRSV Infection. Trends in Microbiology, 2017, 25, 968-979.	7.7	102
4	Dominant subtype switch in avian influenza viruses during 2016–2019 in China. Nature Communications, 2020, 11, 5909.	12.8	93
5	Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling. BMC Genomics, 2010, 11, 544.	2.8	78
6	MYH9 is an Essential Factor for Porcine Reproductive and Respiratory Syndrome Virus Infection. Scientific Reports, 2016, 6, 25120.	3.3	78
7	MicroRNA miR-24-3p Promotes Porcine Reproductive and Respiratory Syndrome Virus Replication through Suppression of Heme Oxygenase-1 Expression. Journal of Virology, 2015, 89, 4494-4503.	3.4	76
8	Lipopolysaccharideâ€induced miRâ€1224 negatively regulates tumour necrosis factorâ€Î± gene expression by modulating Sp1. Immunology, 2011, 133, 8-20.	4.4	64
9	A novel porcine reproductive and respiratory syndrome virus vector system that stably expresses enhanced green fluorescent protein as a separate transcription unit. Veterinary Research, 2013, 44, 104.	3.0	60
10	Carbon Monoxide Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication by the Cyclic GMP/Protein Kinase G and NF-κB Signaling Pathway. Journal of Virology, 2017, 91, .	3.4	55
11	Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines. Microbial Pathogenesis, 2020, 149, 104553.	2.9	55
12	Heme oxygenase-1 acts as an antiviral factor for porcine reproductive and respiratory syndrome virus infection and over-expression inhibits virus replication in vitro. Antiviral Research, 2014, 110, 60-69.	4.1	53
13	An intracellularly expressed Nsp9-specific nanobody in MARC-145 cells inhibits porcine reproductive and respiratory syndrome virus replication. Veterinary Microbiology, 2015, 181, 252-260.	1.9	53
14	Inhibition of HSP70 reduces porcine reproductive and respiratory syndrome virus replication in vitro. BMC Microbiology, 2014, 14, 64.	3.3	36
15	Heparanase Upregulation Contributes to Porcine Reproductive and Respiratory Syndrome Virus Release. Journal of Virology, 2017, 91, .	3.4	32
16	Integrated miRNA and mRNA transcriptomes of porcine alveolar macrophages (PAM cells) identifies strain-specific miRNA molecular signatures associated with H-PRRSV and N-PRRSV infection. Molecular Biology Reports, 2014, 41, 5863-5875.	2.3	31
17	Inhibition of HSP90 attenuates porcine reproductive and respiratory syndrome virus production in vitro. Virology Journal, 2014, 11, 17.	3.4	31
18	Curcumin is a promising inhibitor of genotype 2 porcine reproductive and respiratory syndrome virus infection. BMC Veterinary Research, 2017, 13, 298.	1.9	31

Shuqi Xiao

#	Article	IF	CITATIONS
19	Inhibition of highly pathogenic PRRSV replication in MARC-145 cells by artificial microRNAs. Virology Journal, 2011, 8, 491.	3.4	28
20	MicroRNA let-7f-5p Inhibits Porcine Reproductive and Respiratory Syndrome Virus by Targeting MYH9. Scientific Reports, 2016, 6, 34332.	3.3	28
21	A novel biotinylated nanobody-based blocking ELISA for the rapid and sensitive clinical detection of porcine epidemic diarrhea virus. Journal of Nanobiotechnology, 2019, 17, 96.	9.1	26
22	Antibody dependent enhancement: Unavoidable problems in vaccine development. Advances in Immunology, 2021, 151, 99-133.	2.2	25
23	MiR-22 promotes porcine reproductive and respiratory syndrome virus replication by targeting the host factor HO-1. Veterinary Microbiology, 2016, 192, 226-230.	1.9	23
24	Heme oxygenase-1 metabolite biliverdin, not iron, inhibits porcine reproductive and respiratory syndrome virus replication. Free Radical Biology and Medicine, 2017, 102, 149-161.	2.9	23
25	Cellular microRNA miR-10a-5p inhibits replication of porcine reproductive and respiratory syndrome virus by targeting the host factor signal recognition particle 14. Journal of General Virology, 2017, 98, 624-632.	2.9	23
26	The capsule of Streptococcus equi ssp. zooepidemicus is a target for attenuation in vaccine development. Vaccine, 2012, 30, 4670-4675.	3.8	22
27	Glycoprotein 5 of porcine reproductive and respiratory syndrome virus strain SD16 inhibits viral replication and causes G2/M cell cycle arrest, but does not induce cellular apoptosis in Marc-145 cells. Virology, 2015, 484, 136-145.	2.4	20
28	A novel intracellularly expressed NS5B-specific nanobody suppresses bovine viral diarrhea virus replication. Veterinary Microbiology, 2020, 240, 108449.	1.9	20
29	Rabbit hepatitis E virus is an opportunistic pathogen in specific-pathogen-free rabbits with the capability of cross-species transmission. Veterinary Microbiology, 2017, 201, 72-77.	1.9	19
30	Porcine reproductive and respiratory syndrome virus inhibits MARC-145 proliferation via inducing apoptosis and G2/M arrest by activation of Chk/Cdc25C and p53/p21 pathway. Virology Journal, 2018, 15, 169.	3.4	19
31	Proteome changes of lungs artificially infected with H-PRRSV and N-PRRSV by two-dimensional fluorescence difference gel electrophoresis. Virology Journal, 2010, 7, 107.	3.4	18
32	Heme Oxygenase-1 Suppresses Bovine Viral Diarrhoea Virus Replication in vitro. Scientific Reports, 2015, 5, 15575.	3.3	17
33	Development of a blocking ELISA for detection of antibodies against avian hepatitis E virus. Journal of Virological Methods, 2014, 204, 1-5.	2.1	16
34	Intracellularly expressed nanobodies against non-structural protein 4 of porcine reproductive and respiratory syndrome virus inhibit virus replication. Biotechnology Letters, 2016, 38, 1081-1088.	2.2	16
35	Carbon monoxide and biliverdin suppress bovine viral diarrhoea virus replication. Journal of General Virology, 2017, 98, 2982-2992.	2.9	16
36	Molecular Mechanism of Porcine Epidemic Diarrhea Virus Cell Tropism. MBio, 2022, 13, e0373921.	4.1	16

Shuqi Xiao

#	Article	IF	CITATIONS
37	Simultaneous Detection and Differentiation of Highly Virulent and Classical Chinese-Type Isolation of PRRSV by Real-Time RT-PCR. Journal of Immunology Research, 2014, 2014, 1-7.	2.2	14
38	Induction of HOXA3 by Porcine Reproductive and Respiratory Syndrome Virus Inhibits Type I Interferon Response through Negative Regulation of HO-1 Transcription. Journal of Virology, 2022, 96, JVI0186321.	3.4	14
39	Reverse genetic systems: Rational design of coronavirus live attenuated vaccines with immune sequelae. Advances in Virus Research, 2020, 107, 383-416.	2.1	13
40	Inhibition of replication of porcine reproductive and respiratory syndrome virus by hemin is highly dependent on heme oxygenase-1, but independent of iron in MARC-145 cells. Antiviral Research, 2014, 105, 39-46.	4.1	12
41	Genomic characteristics and pathogenicity of a new recombinant strain of porcine reproductive and respiratory syndrome virus. Archives of Virology, 2021, 166, 389-402.	2.1	10
42	GP5 expression in Marc-145 cells inhibits porcine reproductive and respiratory syndrome virus infection by inducing beta interferon activity. Veterinary Microbiology, 2014, 174, 409-418.	1.9	9
43	MicroRNA ssc-miR-124a exhibits antiviral activity against porcine reproductive and respiratory syndrome virus via suppression of host genes CD163. Veterinary Microbiology, 2021, 261, 109216.	1.9	9
44	Cellular microRNA miR-c89 inhibits replication of porcine reproductive and respiratory syndrome virus by targeting the host factor porcine retinoid X receptor β. Journal of General Virology, 2019, 100, 1407-1416.	2.9	9
45	Host Cells Actively Resist Porcine Reproductive and Respiratory Syndrome Virus Infection via the IRF8-MicroRNA-10a-SRP14 Regulatory Pathway. Journal of Virology, 2022, 96, e0000322.	3.4	9
46	Genetic characterization and pathogenicity of a novel recombinant PRRSV from lineage 1, 8 and 3 in China failed to infect MARC-145Âcells. Microbial Pathogenesis, 2022, 165, 105469.	2.9	5
47	Single-chain anti-idiotypic antibody retains its specificity to porcine reproductive and respiratory syndrome virus GP5. Immunology Letters, 2015, 163, 8-13.	2.5	3
48	MicroRNA-like viral small RNA from porcine reproductive and respiratory syndrome virus negatively regulates viral replication by targeting the viral nonstructural protein 2. Oncotarget, 2016, 7, 82902-82920.	1.8	3