Ivan Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5491193/publications.pdf

Version: 2024-02-01

١			126907		161849	
	56	6,874	33		54	
ı	papers	citations	h-index		g-index	
ı						
				_		
	59	59	59		5591	
	all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Generation of human islet cell type-specific identity genesets. Nature Communications, 2022, 13, 2020.	12.8	25
2	Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity. Nature Communications, 2022, 13 , .	12.8	13
3	From immune to olfactory expression: neofunctionalization of formyl peptide receptors. Cell and Tissue Research, 2021, 383, 387-393.	2.9	8
4	Ultrafast pulse shaping modulates perceived visual brightness in living animals. Science Advances, 2021, 7, .	10.3	2
5	SARS-CoV-2 Receptors and Entry Genes Are Expressed in the Human Olfactory Neuroepithelium and Brain. IScience, 2020, 23, 101839.	4.1	173
6	Neuroinflammation-Associated Aspecific Manipulation of Mouse Predator Fear by Toxoplasma gondii. Cell Reports, 2020, 30, 320-334.e6.	6.4	88
7	Restoring wild-type-like CA1 network dynamics and behavior during adulthood in a mouse model of schizophrenia. Nature Neuroscience, 2018, 21, 1412-1420.	14.8	53
8	Context- and Output Layer-Dependent Long-Term Ensemble Plasticity in a Sensory Circuit. Neuron, 2017, 93, 1198-1212.e5.	8.1	70
9	Evolution of immune chemoreceptors into sensors of the outside world. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7397-7402.	7.1	24
10	Vomeronasal Receptors. , 2016, , 175-190.		5
11	Alteration of Nrp1 signaling at different stages of olfactory neuron maturation promotes glomerular shifts along distinct axes in the olfactory bulb. Development (Cambridge), 2016, 143, 3817-3825.	2.5	20
12	Dense encoding of natural odorants by ensembles of sparsely activated neurons in the olfactory bulb. Scientific Reports, 2016, 6, 36514.	3.3	16
13	The Vomeronasal System Mediates Sick Conspecific Avoidance. Current Biology, 2015, 25, 251-255.	3.9	96
14	Sensory-Evoked Intrinsic Imaging Signals in the Olfactory Bulb Are Independent of Neurovascular Coupling. Cell Reports, 2015, 12, 313-325.	6.4	25
15	Neuronal pattern separation in the olfactory bulb improves odor discrimination learning. Nature Neuroscience, 2015, 18, 1474-1482.	14.8	165
16	Large-scale transcriptional profiling of chemosensory neurons identifies receptor-ligand pairs in vivo. Nature Neuroscience, 2015, 18, 1455-1463.	14.8	119
17	Long term functional plasticity of sensory inputs mediated by olfactory learning. ELife, 2014, 3, e02109.	6.0	53

#	Article	IF	Citations
19	To care or not to care. Nature, 2014, 509, 294-295.	27.8	O
20	A population of glomerular glutamatergic neurons controls sensory information transfer in the mouse olfactory bulb. Nature Communications, 2014, 5, 3791.	12.8	36
21	Singular Expression of Olfactory Receptor Genes. Cell, 2013, 155, 274-277.	28.9	55
22	Contrasted Evolution of the Vomeronasal Receptor Repertoires in Mammals and Squamate Reptiles. Genome Biology and Evolution, 2013, 5, 389-401.	2.5	54
23	Convergence of FPR-rs3-expressing neurons in the mouse accessory olfactory bulb. Molecular and Cellular Neurosciences, 2013, 56, 140-147.	2.2	11
24	The Krüppel-associated Box Repressor Domain Can Induce Reversible Heterochromatization of a Mouse Locus in Vivo. Journal of Biological Chemistry, 2012, 287, 25361-25369.	3.4	15
25	The wiring of Grueneberg ganglion axons is dependent on neuropilin 1. Development (Cambridge), 2012, 139, 2783-2791.	2.5	30
26	Imaging Pheromone Sensing in a Mouse Vomeronasal Acute Tissue Slice Preparation. Journal of Visualized Experiments, $2011, \ldots$	0.3	14
27	The Chemical MUPpeteer. Cell, 2010, 141, 568-570.	28.9	3
28	Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature, 2009, 459, 574-577.	27.8	323
29	A common gene exclusion mechanism used by two chemosensory systems. European Journal of Neuroscience, 2009, 29, 671-678.	2.6	15
30	Adenylyl cyclase-dependent axonal targeting in the olfactory system. Development (Cambridge), 2007, 134, 2481-2489.	2.5	95
31	Odorant and pheromone receptor gene regulation in vertebrates. Current Opinion in Genetics and Development, 2007, 17, 465-470.	3.3	9
32	Divergent Evolution among Teleost V1r Receptor Genes. PLoS ONE, 2007, 2, e379.	2.5	30
33	Gene cluster lock after pheromone receptor gene choice. EMBO Journal, 2007, 26, 3423-3430.	7.8	54
34	Projection of the $Gr\tilde{A}_{-}^{1/4}$ neberg ganglion to the mouse olfactory bulb. European Journal of Neuroscience, 2006, 23, 2887-2894.	2.6	66
35	Olfactory expression of a single and highly variable V1r pheromone receptor-like gene in fish species. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102 , $5489-5494$.	7.1	110
36	Remarkable diversity of mammalian pheromone receptor repertoires. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6639-6640.	7.1	18

#	Article	IF	CITATIONS
37	Axon Guidance of Mouse Olfactory Sensory Neurons by Odorant Receptors and the \hat{l}^22 Adrenergic Receptor. Cell, 2004, 117, 833-846.	28.9	277
38	Odorant and vomeronasal receptor genes in two mouse genome assemblies. Genomics, 2004, 83, 802-811.	2.9	149
39	Pheromone receptors in mammals. Hormones and Behavior, 2004, 46, 219-230.	2.1	39
40	Nosing into pheromone detectors. Nature Neuroscience, 2003, 6, 438-440.	14.8	13
41	A Divergent Pattern of Sensory Axonal Projections Is Rendered Convergent by Second-Order Neurons in the Accessory Olfactory Bulb. Neuron, 2002, 35, 1057-1066.	8.1	146
42	Aberrant Sensory Innervation of the Olfactory Bulb in Neuropilin-2 Mutant Mice. Journal of Neuroscience, 2002, 22, 4025-4035.	3 . 6	160
43	Novel human vomeronasal receptor-like genes reveal species-specific families. Current Biology, 2002, 12, R409-R411.	3.9	98
44	Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature, 2002, 419, 70-74.	27.8	338
45	Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors. Nature Neuroscience, 2002, 5, 134-140.	14.8	175
46	Pheromone detection mediated by a V1r vomeronasal receptor. Nature Neuroscience, 2002, 5, 1261-1262.	14.8	208
47	Differentiation of Embryonic Stem Cell Lines Generated from Adult Somatic Cells by Nuclear Transfer. Science, 2001, 292, 740-743.	12.6	548
48	A putative pheromone receptor gene expressed in human olfactory mucosa. Nature Genetics, 2000, 26, 18-19.	21.4	221
49	Peripheral Olfactory Projections Are Differentially Affected in Mice Deficient in a Cyclic Nucleotide-Gated Channel Subunit. Neuron, 2000, 26, 81-91.	8.1	218
50	Cutaneous Delayed-Type Hypersensitivity Response is Inhibited in Transgenic Mice with Keratinocyte-Specific CD44 Expression Defect. Journal of Investigative Dermatology, 1999, 113, 137-138.	0.7	14
51	Variable Patterns of Axonal Projections of Sensory Neurons in the Mouse Vomeronasal System. Cell, 1999, 97, 199-208.	28.9	355
52	Oxygen Toxicity in Mouse Lung: Pathways to Cell Death. American Journal of Respiratory Cell and Molecular Biology, 1998, 19, 573-581.	2.9	271
53	Mouse Vaginal Opening Is an Apoptosis-Dependent Process Which Can Be Prevented by the Overexpression of Bcl2. Developmental Biology, 1997, 184, 115-121.	2.0	73
54	Bcl-2 prevents activation of CPP32 cysteine protease and cleavage of poly (ADP-ribose) polymerase and U1-70 kD proteins in staurosporine-mediated apoptosis. Cell Death and Differentiation, 1997, 4, 34-38.	11.2	33

#	Article	IF	CITATIONS
55	An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO Journal, 1997, 16, 2262-2270.	7.8	519
56	Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron, 1994, 13, 1017-1030.	8.1	1,091