List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/54909/publications.pdf Version: 2024-02-01

LAL-FA SHEN

#	Article	IF	CITATIONS
1	Ultrathin Mesoporous NiCo ₂ O ₄ Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors. Advanced Functional Materials, 2012, 22, 4592-4597.	14.9	1,545
2	Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nature Communications, 2015, 6, 6694.	12.8	1,101
3	Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry, 2009, 19, 5772.	6.7	830
4	Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy and Environmental Science, 2012, 5, 7883.	30.8	780
5	NiCo ₂ S ₄ Nanosheets Grown on Nitrogenâ€Ðoped Carbon Foams as an Advanced Electrode for Supercapacitors. Advanced Energy Materials, 2015, 5, 1400977.	19.5	729
6	Mesoporous NiCo ₂ O ₄ Nanowire Arrays Grown on Carbon Textiles as Binderâ€Free Flexible Electrodes for Energy Storage. Advanced Functional Materials, 2014, 24, 2630-2637.	14.9	718
7	Selfâ€Templated Formation of Uniform NiCo ₂ O ₄ Hollow Spheres with Complex Interior Structures for Lithiumâ€lon Batteries and Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 1868-1872.	13.8	713
8	Challenges and Perspectives for NASICONâ€Type Electrode Materials for Advanced Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1700431.	21.0	499
9	Hydrogenated Li ₄ Ti ₅ O ₁₂ Nanowire Arrays for High Rate Lithium Ion Batteries. Advanced Materials, 2012, 24, 6502-6506.	21.0	451
10	Flexible Hybrid Paper Made of Monolayer Co ₃ O ₄ Microsphere Arrays on rGO/CNTs and Their Application in Electrochemical Capacitors. Advanced Functional Materials, 2012, 22, 2560-2566.	14.9	362
11	Dualâ€Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1605650.	21.0	325
12	Li ₄ Ti ₅ O ₁₂ Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries. Advanced Energy Materials, 2012, 2, 691-698.	19.5	321
13	Peapodâ€like Li ₃ VO ₄ /Nâ€Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for Highâ€Energy Lithiumâ€lon Capacitors. Advanced Materials, 2017, 29, 1700142.	21.0	298
14	Hierarchically structured carbon-based composites: Design, synthesis and their application in electrochemical capacitors. Nanoscale, 2011, 3, 529-545.	5.6	281
15	General Formation of MS (M = Ni, Cu, Mn) Boxâ€inâ€Box Hollow Structures with Enhanced Pseudocapacitive Properties. Advanced Functional Materials, 2014, 24, 7440-7446.	14.9	281
16	Flexible Sodiumâ€lon Pseudocapacitors Based on 3D Na ₂ Ti ₃ O ₇ Nanosheet Arrays/Carbon Textiles Anodes. Advanced Functional Materials, 2016, 26, 3703-3710.	14.9	270
17	High performance lithium–sulfur batteries: advances and challenges. Journal of Materials Chemistry A, 2014, 2, 12662-12676.	10.3	269
18	Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. Journal of Materials Chemistry, 2010, 20, 6998.	6.7	266

#	Article	IF	CITATIONS
19	Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium–sulfur battery. Journal of Materials Chemistry A, 2013, 1, 4490.	10.3	266
20	Self-Assembled Nb ₂ O ₅ Nanosheets for High Energy–High Power Sodium Ion Capacitors. Chemistry of Materials, 2016, 28, 5753-5760.	6.7	254
21	A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochimica Acta, 2011, 56, 5115-5121.	5.2	243
22	Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors. Journal of Materials Chemistry, 2012, 22, 16084.	6.7	241
23	Prussian blue analogues: a new class of anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 5852-5857.	10.3	241
24	Encapsulating Sulfur into Hierarchically Ordered Porous Carbon as a Highâ€Performance Cathode for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2013, 19, 1013-1019.	3.3	212
25	Design and Tailoring of a Three-Dimensional TiO ₂ –Graphene–Carbon Nanotube Nanocomposite for Fast Lithium Storage. Journal of Physical Chemistry Letters, 2011, 2, 3096-3101.	4.6	205
26	Enhanced high-current capacitive behavior of graphene/CoAl-layered double hydroxide composites as electrode material for supercapacitors. Journal of Power Sources, 2012, 199, 395-401.	7.8	195
27	General Strategy for Designing Core–Shell Nanostructured Materials for High-Power Lithium Ion Batteries. Nano Letters, 2012, 12, 5673-5678.	9.1	193
28	Pseudocapacitive behaviours of Na ₂ Ti ₃ O ₇ @CNT coaxial nanocables for high-performance sodium-ion capacitors. Journal of Materials Chemistry A, 2015, 3, 21277-21283.	10.3	187
29	Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. Journal of Power Sources, 2012, 197, 319-324.	7.8	185
30	In situ growth of Li ₄ Ti ₅ O ₁₂ on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 761-767.	6.7	182
31	In situ synthesis of high-loading Li ₄ Ti ₅ O ₁₂ –graphene hybrid nanostructures for high rate lithium ion batteries. Nanoscale, 2011, 3, 572-574.	5.6	181
32	Chemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 1096-1101.	10.3	180
33	Facile synthesis of N-doped carbon-coated Li4Ti5O12 microspheres using polydopamine as a carbon source for high rate lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 7270.	10.3	177
34	Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film. Electrochimica Acta, 2011, 56, 9224-9232.	5.2	164
35	Porous Nitrogenâ€Doped Carbon Nanotubes Derived from Tubular Polypyrrole for Energyâ€&torage Applications. Chemistry - A European Journal, 2013, 19, 12306-12312.	3.3	162
36	Hierarchically Porous Carbon Encapsulating Sulfur as a Superior Cathode Material for High Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2014, 6, 194-199.	8.0	152

#	Article	IF	CITATIONS
37	High rate capability and superior cycle stability of a flower-like Sb ₂ S ₃ anode for high-capacity sodium ion batteries. Nanoscale, 2015, 7, 3309-3315.	5.6	147
38	Zinc cobalt sulfide nanosheets grown on nitrogen-doped graphene/carbon nanotube film as a high-performance electrode for supercapacitors. Journal of Materials Chemistry A, 2016, 4, 11256-11263.	10.3	145
39	TiNb ₂ O ₇ nanoparticles assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries. Nanoscale, 2015, 7, 619-624.	5.6	129
40	Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery. Electrochimica Acta, 2013, 107, 78-84.	5.2	128
41	ZnO/TiO ₂ nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. Nanoscale, 2013, 5, 936-943.	5.6	124
42	The origin of capacity fluctuation and rescue of dead Mn-based Zn–ion batteries: a Mn-based competitive capacity evolution protocol. Energy and Environmental Science, 2022, 15, 1106-1118.	30.8	124
43	Carbon oated Li ₃ VO ₄ Spheres as Constituents of an Advanced Anode Material for Highâ€Rate Long‣ife Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1701571.	21.0	119
44	Rational Design of Void-Involved Si@TiO ₂ Nanospheres as High-Performance Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 6497-6503.	8.0	117
45	Ultrathin Ti ₂ Nb ₂ O ₉ Nanosheets with Pseudocapacitive Properties as Superior Anode for Sodiumâ€lon Batteries. Advanced Materials, 2018, 30, e1804378.	21.0	117
46	Lysine-assisted hydrothermal synthesis of urchin-like ordered arrays of mesoporous Co(OH)2 nanowires and their application in electrochemical capacitors. Journal of Materials Chemistry, 2010, 20, 10809.	6.7	115
47	Electrochemically induced transformation of NiS nanoparticles into Ni(OH)2 in KOH aqueous solution toward electrochemical capacitors. Electrochimica Acta, 2011, 56, 7454-7459.	5.2	112
48	Advanced Energyâ€ S torage Architectures Composed of Spinel Lithium Metal Oxide Nanocrystal on Carbon Textiles. Advanced Energy Materials, 2013, 3, 1484-1489.	19.5	109
49	Ge–graphene–carbon nanotube composite anode for high performance lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 1498-1503.	10.3	105
50	Nitrogen-doped carbon coated Li4Ti5O12 nanocomposite: Superior anode materials for rechargeable lithium ion batteries. Journal of Power Sources, 2013, 221, 122-127.	7.8	100
51	Mesoporous NaTi ₂ (PO ₄) ₃ /CMK-3 nanohybrid as anode for long-life Na-ion batteries. Journal of Materials Chemistry A, 2014, 2, 20659-20666.	10.3	99
52	Cross-Linking Hollow Carbon Sheet Encapsulated CuP ₂ Nanocomposites for High Energy Density Sodium-Ion Batteries. ACS Nano, 2018, 12, 7018-7027.	14.6	99
53	Facile interfacial synthesis of flower-like hierarchical a-MnO2 sub-microspherical superstructures constructed by two-dimension mesoporous nanosheets and their application in electrochemical capacitors. Journal of Materials Chemistry, 2011, 21, <u>16035</u> .	6.7	96
54	Three-dimensionally ordered porous TiNb ₂ O ₇ nanotubes: a superior anode material for next generation hybrid supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16785-16790.	10.3	96

#	Article	IF	CITATIONS
55	Flexible metal–organic frameworks as superior cathodes for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16590-16597.	10.3	94
56	Preparation of ZnCo ₂ O ₄ nanoflowers on a 3D carbon nanotube/nitrogen-doped graphene film and its electrochemical capacitance. Journal of Materials Chemistry A, 2015, 3, 21891-21898.	10.3	93
57	A modified molten-salt method to prepare graphene electrode with high capacitance and low self-discharge rate. Carbon, 2016, 102, 255-261.	10.3	92
58	Preparation and electrochemical capacitance of hierarchical graphene/polypyrrole/carbon nanotube ternary composites. Electrochimica Acta, 2012, 69, 160-166.	5.2	90
59	Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors. Journal of Materials Chemistry, 2011, 21, 18183.	6.7	88
60	Three-Dimensional Coherent Titania–Mesoporous Carbon Nanocomposite and Its Lithium-Ion Storage Properties. ACS Applied Materials & Interfaces, 2012, 4, 2985-2992.	8.0	84
61	Fabrication of porous carbon spheres for high-performance electrochemical capacitors. RSC Advances, 2014, 4, 7538.	3.6	83
62	Novel template-free solvothermal synthesis of mesoporous Li4Ti5O12-C microspheres for high power lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 14414.	6.7	81
63	Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodiumâ€Storage Performance. Angewandte Chemie - International Edition, 2019, 58, 7238-7243.	13.8	80
64	Ultralong SrLi2Ti6O14 nanowires composed of single-crystalline nanoparticles: Promising candidates for high-power lithium ions batteries. Nano Energy, 2015, 13, 18-27.	16.0	79
65	Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries. Journal of Alloys and Compounds, 2013, 572, 37-42.	5.5	77
66	Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances. ACS Applied Materials & amp; Interfaces, 2015, 7, 22284-22291.	8.0	77
67	Lamellar-structured biomass-derived phosphorus- and nitrogen-co-doped porous carbon for high-performance supercapacitors. New Journal of Chemistry, 2015, 39, 9497-9503.	2.8	75
68	Urchin-like Co3O4 microspherical hierarchical superstructures constructed by one-dimension nanowires toward electrochemical capacitors. RSC Advances, 2011, 1, 1521.	3.6	73
69	N-doped carbon foam based three-dimensional electrode architectures and asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2853-2860.	10.3	70
70	From biomolecule to Na ₃ V ₂ (PO ₄) ₃ /nitrogen-decorated carbon hybrids: highly reversible cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 18606-18612	10.3	65
71	One-Dimensional Vanadium Nitride Nanofibers Fabricated by Electrospinning for Supercapacitors. Electrochimica Acta, 2015, 173, 680-686.	5.2	64
72	Trivalent Ti self-doped Li 4 Ti 5 O 12 : A high performance anode material for lithium-ion capacitors. Journal of Electroanalytical Chemistry, 2015, 757, 1-7.	3.8	63

#	Article	IF	CITATIONS
73	A novel method to synthesize whisker-like Co(OH)2 and its electrochemical properties as an electrochemical capacitor electrode. Electrochimica Acta, 2010, 56, 115-121.	5.2	59
74	A facile one-pot synthesis of TiO2/nitrogen-doped reduced graphene oxide nanocomposite as anode materials for high-rate lithium-ion batteries. Electrochimica Acta, 2014, 133, 209-216.	5.2	59
75	Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for lithium-ion batteries. CrystEngComm, 2012, 14, 4284.	2.6	58
76	Template-free synthesis of ordered mesoporous NiO/poly(sodium-4-styrene sulfonate) functionalized carbon nanotubes composite for electrochemical capacitors. Nano Research, 2009, 2, 722-732.	10.4	57
77	Facile growth of hexagonal NiO nanoplatelet arrays assembled by mesoporous nanosheets on Ni foam towards high-performance electrochemical capacitors. Electrochimica Acta, 2012, 78, 532-538.	5.2	57
78	PEDOT coated Li4Ti5O12 nanorods: Soft chemistry approach synthesis and their lithium storage properties. Electrochimica Acta, 2014, 129, 283-289.	5.2	57
79	Porous NiCo ₂ O ₄ nanotubes as a noble-metal-free effective bifunctional catalyst for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 24309-24314.	10.3	57
80	Enhanced Performance of Aqueous Sodiumâ€ion Batteries Using Electrodes Based on the NaTi ₂ (PO ₄) ₃ /MWNTs–Na _{0.44} MnO ₂ System. Energy Technology, 2014, 2, 705-712.	3.8	56
81	Facile hydrothermal synthesis of single crystalline TiOF2 nanocubes and their phase transitions to TiO2 hollow nanocages as anode materials for lithium-ion battery. Electrochimica Acta, 2012, 62, 408-415.	5.2	54
82	Homogenous incorporation of SnO2 nanoparticles in carbon cryogels via the thermal decomposition of stannous sulfate and their enhanced lithium-ion intercalation properties. Nano Energy, 2013, 2, 769-778.	16.0	54
83	A Fast Protonâ€Induced Pseudocapacitive Supercapacitor with High Energy and Power Density. Advanced Functional Materials, 2022, 32, 2107720.	14.9	53
84	Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability. Nanoscale, 2015, 7, 7409-7414.	5.6	52
85	Selfâ€Sacrificial Templateâ€Directed Synthesis of Metal–Organic Frameworkâ€Derived Porous Carbon for Energyâ€Storage Devices. ChemElectroChem, 2016, 3, 668-674.	3.4	52
86	Top-down synthesis of interconnected two-dimensional carbon/antimony hybrids as advanced anodes for sodium storage. Energy Storage Materials, 2018, 10, 122-129.	18.0	50
87	Alloying Reaction Confinement Enables High-Capacity and Stable Anodes for Lithium-Ion Batteries. ACS Nano, 2019, 13, 9511-9519.	14.6	48
88	Hollow NiCo ₂ S ₄ nanotube arrays grown on carbon textile as a self-supported electrode for asymmetric supercapacitors. RSC Advances, 2016, 6, 9950-9957.	3.6	47
89	Cross-linked NiCo2O4 nanosheets with low crystallinity and rich oxygen vacancies for asymmetric supercapacitors. Journal of Alloys and Compounds, 2020, 822, 153689.	5.5	47
90	Enhanced Lithiumâ€Storage Performance from Threeâ€Dimensional MoS ₂ Nanosheets/Carbon Nanotube Paper. ChemElectroChem, 2014, 1, 1118-1125.	3.4	43

#	Article	IF	CITATIONS
91	Fabrication of a sandwich structured electrode for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 14280.	10.3	40
92	Niobium Tungsten Oxide in a Green Water-in-Salt Electrolyte Enables Ultra-Stable Aqueous Lithium-Ion Capacitors. Nano-Micro Letters, 2020, 12, 168.	27.0	40
93	Mesoporous Li4Ti5O12/carbon nanofibers for high-rate lithium-ion batteries. Journal of Alloys and Compounds, 2014, 587, 171-176.	5.5	39
94	Synthesis of flexible and porous cobalt hydroxide/conductive cotton textile sheet and its application in electrochemical capacitors. Electrochimica Acta, 2011, 56, 6683-6687.	5.2	37
95	Electrospun Hierarchical Li ₄ Ti _{4.95} Nb _{0.05} O ₁₂ /Carbon Composite Nanofibers for High Rate Lithium Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A426-A430.	2.9	37
96	Synthesis of hydrogenated TiO ₂ –reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9150-9155.	10.3	35
97	Glycine-assisted hydrothermal synthesis of nanostructured Co x Ni1â^'x –Al layered triple hydroxides as electrode materials for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2012, 16, 1933-1940.	2.5	34
98	Nb ₂ O ₅ nanoparticles encapsulated in ordered mesoporous carbon matrix as advanced anode materials for Li ion capacitors. RSC Advances, 2016, 6, 71338-71344.	3.6	34
99	Pseudocapacitive T-Nb2O5/N-doped carbon nanosheets anode enable high performance lithium-ion capacitors. Journal of Electroanalytical Chemistry, 2019, 842, 82-88.	3.8	33
100	Fabrication of the Oxygen Vacancy Amorphous MnO ₂ /Carbon Nanotube as Cathode for Advanced Aqueous Zincâ€lon Batteries. Energy Technology, 2021, 9, 2000769.	3.8	33
101	Design of a Nitrogenâ€Doped, Carbonâ€Coated Li ₄ Ti ₅ O ₁₂ Nanocomposite with a Core–Shell Structure and Its Application for Highâ€Rate Lithiumâ€Ion Batteries. ChemPlusChem, 2014, 79, 128-133.	2.8	32
102	Titanium Dioxide/Germanium Core–Shell Nanorod Arrays Grown on Carbon Textiles as Flexible Electrodes for High Density Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2015, 32, 364-372.	2.3	32
103	Heterostructure NiS2/NiCo2S4 nanosheets array on carbon nanotubes sponge electrode with high specific capacitance for supercapacitors. Journal of Power Sources, 2022, 518, 230763.	7.8	30
104	Interface-hydrothermal synthesis and electrochemical properties of CoSx nanodots/poly(sodium-4-styrene sulfonate) functionalized multi-walled carbon nanotubes nanocomposite. Journal of Colloid and Interface Science, 2010, 349, 181-185.	9.4	29
105	Synthesis of nanostructured materials by using metal-cyanide coordination polymers and their lithium storage properties. Nanoscale, 2013, 5, 11087.	5.6	28
106	Rhombohedral NASICON-structured Li2NaV2(PO4)3 with single voltage plateau for superior lithium storage. RSC Advances, 2014, 4, 8627.	3.6	28
107	Biomolecule-assisted hydrothermal approach towards synthesis of ultra-thin nanoporous α-Co(OH)2 mesocrystal nanosheets for electrochemical capacitors. CrystEngComm, 2011, 13, 6130.	2.6	27
108	Synthesis of LiNi _{0.5} Mn _{1.5} O ₄ Hollow Microspheres and Their Lithium torage Properties. ChemElectroChem, 2015, 2, 127-133.	3.4	25

#	Article	IF	CITATIONS
109	Bacterial cellulose-derived carbon nanofibers as both anode and cathode for hybrid sodium ion capacitor. RSC Advances, 2020, 10, 7780-7790.	3.6	25
110	Conductive Metal–Organic Framework for High Energy Sodium-Ion Hybrid Capacitors. ACS Applied Energy Materials, 2021, 4, 1568-1574.	5.1	25
111	Electrochemical Proton Storage: From Fundamental Understanding to Materials to Devices. Nano-Micro Letters, 2022, 14, .	27.0	24
112	Interface-hydrothermal synthesis of Sn3S4/graphene sheet composites and their application in electrochemical capacitors. Materials Letters, 2011, 65, 374-377.	2.6	22
113	Core/shell Cu/FePtCu nanoparticles with face-centered tetragonal texture: An active and stable low-Pt catalyst for enhanced oxygen reduction. Nano Energy, 2018, 54, 280-287.	16.0	22
114	Vanadium nitride nanoparticles embedded in carbon matrix with pseudocapacitive behavior for high performance lithium-ion capacitors. Rare Metals, 2022, 41, 2460-2469.	7.1	22
115	Synthesis and supercapacitance of flower-like Co(OH)2 hierarchical superstructures self-assembled by mesoporous nanobelts. Journal of Solid State Electrochemistry, 2012, 16, 1519-1525.	2.5	21
116	General Strategy to Fabricate Ternary Metal Nitride/Carbon Nanofibers for Supercapacitors. ChemElectroChem, 2015, 2, 2020-2026.	3.4	19
117	Stabilized titanium nitride nanowire supported silicon core–shell nanorods as high capacity lithium-ion anodes. Journal of Materials Chemistry A, 2015, 3, 12476-12481.	10.3	19
118	High performance three-dimensional Ge/cyclized-polyacrylonitrile thin film anodes prepared by RF magnetron sputtering for lithium ion batteries. Journal of Materials Science, 2014, 49, 2279-2285.	3.7	18
119	Recent Advances in the Synthesis and Energy Applications of 2D MXenes. ChemElectroChem, 2021, 8, 3804-3826.	3.4	18
120	Heteroatomâ€Doped Porous Carbon Nanosheets: General Preparation and Enhanced Capacitive Properties. Chemistry - A European Journal, 2016, 22, 16668-16674.	3.3	17
121	Facile Synthesis of Nitrogen ontaining Mesoporous Carbon for Highâ€Performance Energy Storage Applications. Chemistry - A European Journal, 2016, 22, 4256-4262.	3.3	17
122	Confined germanium nanoparticles in an N-doped carbon matrix for high-rate and ultralong-life lithium ion batteries. RSC Advances, 2015, 5, 85256-85263.	3.6	15
123	Synthesis and electrochemical performances of mixed-valence vanadium oxide/ordered mesoporous carbon composites for supercapacitors. RSC Advances, 2016, 6, 25056-25061.	3.6	15
124	Enhanced electrochemical properties of MgF2 and C co-coated Li3V2(PO4)3 composite for Li-ion batteries. Journal of Electroanalytical Chemistry, 2016, 762, 1-6.	3.8	14
125	Kinetic photovoltage along semiconductor-water interfaces. Nature Communications, 2021, 12, 4998.	12.8	14
126	Comparative study of electrochemical capacitance of multi-walled carbon nanotubes before and after chopping. Applied Surface Science, 2010, 257, 440-445.	6.1	13

#	Article	IF	CITATIONS
127	Greener and cheaper. Nature Energy, 2017, 2, 836-837.	39.5	13
128	Facile Water/Ionic Liquid/Organic Triphase Interfacial Synthesis of Coral-Like Polyaniline toward High-Performance Electrochemical Capacitors. Journal of the Electrochemical Society, 2012, 159, A1323-A1328.	2.9	12
129	Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodiumâ€Storage Performance. Angewandte Chemie, 2019, 131, 7316-7321.	2.0	12
130	Water/ionic liquid/organic three-phase interfacial synthesis of coral-like polypyrrole toward enhanced electrochemical capacitance. Electrochimica Acta, 2011, 56, 6049-6054.	5.2	11
131	A N-Rich porous carbon nanocube anchored with Co/Fe dual atoms: an efficient bifunctional catalytic host for Li–S batteries. Materials Chemistry Frontiers, 2022, 6, 2095-2102.	5.9	11
132	Functionalized ionic liquid-assisted mechanochemical synthesis of graphene nanosheet/polypyrrole nanocomposites. Materials Letters, 2012, 71, 57-59.	2.6	10
133	Metal Oxides: Mesoporous NiCo ₂ O ₄ Nanowire Arrays Grown on Carbon Textiles as Binderâ€Free Flexible Electrodes for Energy Storage (Adv. Funct. Mater. 18/2014). Advanced Functional Materials, 2014, 24, 2736-2736.	14.9	10
134	Reactive Template Fabrication of Uniform Core–Shell Polyaniline/Multiwalled Carbon Nanotube Nanocomposite and Its Electrochemical Capacitance. Chemistry Letters, 2010, 39, 850-851.	1.3	9
135	Three-dimensional graphene nanosheets/carbon nanotube paper as flexible electrodes for electrochemical capacitors. RSC Advances, 2015, 5, 22173-22177.	3.6	7
136	Lithium-sodium ion capacitors: A new type of hybrid supercapacitors with high energy density. Journal of Electroanalytical Chemistry, 2021, 888, 115202.	3.8	7
137	Ion-exchange synthesis of Co-functionalized titanate nanotubes and their application in electrochemical capacitors. Materials Letters, 2011, 65, 2632-2634.	2.6	6
138	Synthesis of Ru0.58In0.42Oyâ <nh2o 0="" <br="" dispersed="" etqq0="" nanoparticles="" onto="" poly(sodium-4-styrene)="" rgbt="" tj="">capacitors. Journal of Colloid and Interface Science, 2011, 354, 804-809.</nh2o>	Overlock 2 9.4	10 Tf 50 307 6
139	Mesoporous Carbon: Li4Ti5O12 Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries (Adv. Energy Mater. 6/2012). Advanced Energy Materials, 2012, 2, 699-699.	19.5	5
140	Self-supported TiN nanorod array/carbon textile as a lithium host that induces dendrite-free lithium plating with high rates and long cycle life. Journal of Materials Chemistry A, 2020, 8, 3293-3299.	10.3	5
141	High-performance 2.5ÂV supercapacitor with high energy density and long cycling stability based on graphene coated oxygen-vacancy birnessite. Journal of Alloys and Compounds, 2022, 901, 163543.	5.5	5
142	Li3V2(PO4)3/nitrogen-doped reduced graphene oxide nanocomposite with enhanced lithium storage properties. Journal of Solid State Electrochemistry, 2016, 20, 1983-1990.	2.5	4
143	Application of Carbon Nanotubes in Lithium-Ion Batteries. , 2017, , 251-276.		4
144	Synthesis and Electrochemical Performance of Graphene Modified LiFePO ₄ Cathode Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 105-110.	4.9	3

#	Article	IF	CITATIONS
145	Stabilizing Li Plating by a Fluorinated Hybrid Protective Layer. ACS Applied Energy Materials, 2021, 4, 14407-14414.	5.1	3
146	Using a copper hyperaccumulator to synthesize anode and cathode materials for a high-energy 4.1ÂV full-carbon lithium-ion capacitor. Journal of Electroanalytical Chemistry, 2021, 898, 115616.	3.8	2
147	Nb ₃ O ₇ F mesocrystals: orientation formation and application in lithium ion capacitors. CrystEngComm, 2021, 23, 6012-6022.	2.6	2
148	Preparation and Electrochemical Lithium Storage of Titanium Dioxide@Multi-walled Carbon Nanotubes(TiO2@MWNTs) Nanocomposites. Acta Chimica Sinica, 2012, 70, 15.	1.4	2
149	Black TiO2 Nanomaterials for Lithium-Ion Batteries. , 2017, , 249-273.		1
150	HIERARCHICAL Li4Ti5O12 MICROSPHERES AS A HIGH POWER ANODE MATERIAL FOR LITHIUM ION BATTERIES. Journal of Molecular and Engineering Materials, 2013, 01, 1340013.	1.8	0
151	Frontispiz: Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodiumâ€Storage Performance. Angewandte Chemie, 2019, 131, .	2.0	0
152	Frontispiece: Hierarchical Metal Sulfide/Carbon Spheres: A Generalized Synthesis and High Sodium‣torage Performance. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0
153	Self-Standing Flexible N-Doped Graphene/CNTs Supported Spiral Low-Crystalline Ni(OH)2 Electrode with Ultra-Long Cycling Stability for Supercapacitors. Nano, 2021, 16, 2150013.	1.0	0