Lauren F Greenlee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/549008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research, 2009, 43, 2317-2348.	11.3	2,496
2	Catalysts for nitrogen reduction to ammonia. Nature Catalysis, 2018, 1, 490-500.	34.4	1,050
3	Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purification Technology, 2019, 213, 465-499.	7.9	346
4	The Use of Controls for Consistent and Accurate Measurements of Electrocatalytic Ammonia Synthesis from Dinitrogen. ACS Catalysis, 2018, 8, 7820-7827.	11.2	242
5	Multi-Component Fe–Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions. ACS Catalysis, 2017, 7, 365-379.	11.2	154
6	Kinetics of Zero Valent Iron Nanoparticle Oxidation in Oxygenated Water. Environmental Science & Technology, 2012, 46, 12913-12920.	10.0	127
7	The effect of antiscalant addition on calcium carbonate precipitation for a simplified synthetic brackish water reverse osmosis concentrate. Water Research, 2010, 44, 2957-2969.	11.3	114
8	Electrochemical Synthesis of Ammonia: A Low Pressure, Low Temperature Approach. Electrochemical Society Interface, 2015, 24, 51-57.	0.4	114
9	Covalent Organic Frameworks for the Capture, Fixation, or Reduction of CO2. Frontiers in Energy Research, 2019, 7, .	2.3	91
10	Thyroid hormone resistance and increased metabolic rate in the RXR-γ–deficient mouse. Journal of Clinical Investigation, 2000, 106, 73-79.	8.2	86
11	Electrochemically active surface area controls HER activity for FexNi100â^'x films in alkaline electrolyte. Journal of Catalysis, 2021, 394, 104-112.	6.2	59
12	Electrochemical removal and recovery of phosphorus as struvite in an acidic environment using pure magnesium vs. the AZ31 magnesium alloy as the anode. Chemical Engineering Journal, 2020, 380, 122480.	12.7	55
13	Scalable Chitosan-Graphene Oxide Membranes: The Effect of GO Size on Properties and Cross-Flow Filtration Performance. ACS Omega, 2017, 2, 8751-8759.	3.5	45
14	Effect of antiscalant degradation on salt precipitation and solid/liquid separation of RO concentrate. Journal of Membrane Science, 2011, 366, 48-61.	8.2	44
15	Design, characterization, and modeling of a chitosan microneedle patch for transdermal delivery of meloxicam as a pain management strategy for use in cattle. Materials Science and Engineering C, 2021, 118, 111544.	7.3	44
16	Effect of antiscalants on precipitation of an RO concentrate: Metals precipitated and particle characteristics for several water compositions. Water Research, 2010, 44, 2672-2684.	11.3	43
17	Electroless Production of Fertilizer (Struvite) and Hydrogen from Synthetic Agricultural Wastewaters. Journal of the American Chemical Society, 2020, 142, 18844-18858.	13.7	33
18	Basic science of water: Challenges and current status towards a molecular picture. Nano Research, 2015, 8, 3085-3110.	10.4	27

LAUREN F GREENLEE

#	Article	IF	CITATIONS
19	Fe Coordination Environment, Fe-Incorporated Ni(OH) ₂ Phase, and Metallic Core Are Key Structural Components to Active and Stable Nanoparticle Catalysts for the Oxygen Evolution Reaction. ACS Catalysis, 2022, 12, 1992-2008.	11.2	27
20	Chemical Structure of Fe–Ni Nanoparticles for Efficient Oxygen Evolution Reaction Electrocatalysis. ACS Omega, 2019, 4, 17209-17222.	3.5	26
21	Removal of Synthetic Azo Dye Using Bimetallic Nickel-Iron Nanoparticles. Journal of Nanomaterials, 2019, 2019, 1-12.	2.7	26
22	Ozonation of phosphonate antiscalants used for reverse osmosis desalination: Parameter effects on the extent of oxidation. Chemical Engineering Journal, 2014, 244, 505-513.	12.7	25
23	Processing and Characterization of Nanoparticle Coatings for Quartz Crystal Microbalance Measurements. Journal of Research of the National Institute of Standards and Technology, 2015, 120, 1.	1.2	24
24	Influence of nanoparticle processing and additives on PES casting solution viscosity and cast membrane characteristics. Polymer, 2016, 103, 498-508.	3.8	24
25	Influence of synthesis parameters on iron nanoparticle size and zeta potential. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	23
26	Fast Proton Conduction Facilitated by Minimum Water in a Series of Divinylsilyl-11-silicotungstic Acid- <i>co</i> -Butyl Acrylate- <i>co</i> -Hexanediol Diacrylate Polymers. Journal of Physical Chemistry C, 2014, 118, 135-144.	3.1	22
27	Electrochemical ammonia removal and disinfection of aquaculture wastewater using batch and flow reactors incorporating PtRu/graphite anode and graphite cathode. Aquacultural Engineering, 2021, 93, 102155.	3.1	22
28	Development of stabilized zero valent iron nanoparticles. Desalination and Water Treatment, 2012, 37, 114-121.	1.0	21
29	Oxidation behavior of zero-valent iron nanoparticles in mixed matrix water purification membranes. Environmental Science: Water Research and Technology, 2015, 1, 146-152.	2.4	21
30	Advanced oxidation of orange G using phosphonic acid stabilised zerovalent iron. Journal of Environmental Chemical Engineering, 2017, 5, 4014-4023.	6.7	21
31	The Passivating Layer Influence on Mg-Based Anode Corrosion and Implications for Electrochemical Struvite Precipitation. Journal of the Electrochemical Society, 2019, 166, E358-E364.	2.9	18
32	Controlling the 3-D morphology of Ni–Fe-based nanocatalysts for the oxygen evolution reaction. Nanoscale, 2019, 11, 8170-8184.	5.6	18
33	Recycling fertilizer. Nature Energy, 2020, 5, 557-558.	39.5	18
34	ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	15
35	Simultaneous Electrochemical Nutrient Recovery and Hydrogen Generation from Model Wastewater Using a Sacrificial Magnesium Anode. Journal of the Electrochemical Society, 2019, 166, E576-E583.	2.9	14
36	Corn and soybean response to wastewaterâ€recovered and other common phosphorusÂfertilizers. , 2020, 3, e20086.		11

LAUREN F GREENLEE

#	Article	IF	CITATIONS
37	Electrochemical disinfection of irrigation water with a graphite electrode flow cell. Water Environment Research, 2021, 93, 535-548.	2.7	11
38	Total extractable phosphorus in flooded soil as affected by struvite and other fertilizerâ€phosphorus sources. Soil Science Society of America Journal, 2021, 85, 1157-1173.	2.2	11
39	Evaluation of electrochemically precipitated struvite as a fertilizerâ€phosphorus source in floodâ€irrigated rice. Agronomy Journal, 2022, 114, 739-755.	1.8	11
40	Electrochemical nutrient removal from natural wastewater sources and its impact on water quality. Water Research, 2022, 210, 118001.	11.3	11
41	The Use of Ultrasound for the Electrochemical Synthesis of Magnesium Ammonium Phosphate Hexahydrate (Struvite). ECS Transactions, 2019, 92, 47-55.	0.5	10
42	Electrochemical biomass upgrading: degradation of glucose to lactic acid on a copper(<scp>ii</scp>) electrode. RSC Advances, 2021, 11, 31208-31218.	3.6	10
43	Influence of Ligand Size and Chelation Strength on Zerovalent Iron Nanoparticle Adsorption and Oxidation Behavior in the Presence of Water Vapor and Liquid Water. Journal of Physical Chemistry C, 2019, 123, 2474-2487.	3.1	9
44	Wastewaterâ€recovered struvite effects on total extractable phosphorus compared with other phosphorus sources. , 2021, 4, e20154.		9
45	Recombinant peptide fusion proteins enable palladium nanoparticle growth. Materials Letters, 2019, 252, 68-71.	2.6	8
46	Electrochemically precipitated struvite effects on extractable nutrients compared with other fertilizerâ€phosphorus sources. , 2021, 4, e20183.		8
47	Post-Synthesis Separation and Storage of Zero-Valent Iron Nanoparticles. Journal of Nanoscience and Nanotechnology, 2017, 17, 2413-2422.	0.9	7
48	Recombinant peptide fusion construction for proteinâ€ŧemplated catalytic palladium nanoparticles. Biotechnology Progress, 2020, 36, e2956.	2.6	7
49	Role of Surface Area on the Performance of Iron Nickel Nanoparticles for the Oxygen Evolution Reaction (OER). ECS Transactions, 2018, 85, 81-89.	0.5	6
50	An Electrochemical Study of Ammonium Dihydrogen Phosphate on Mg and Mg Alloy Electrodes. Electrocatalysis, 2021, 12, 251-263.	3.0	6
51	The effect of anode degradation on energy demand and production efficiency of electrochemically precipitated struvite. Journal of Applied Electrochemistry, 2022, 52, 205-215.	2.9	6
52	Compositional Optimization of Alloy Fe x Ni y (OH) 2 Nanoparticles for Alkaline Electrochemical Oxygen Evolution. ECS Transactions, 2017, 77, 25-38.	0.5	5
53	Stability and phase transfer of catalytically active platinum nanoparticle suspensions. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	4
54	Disinfection of Irrigation Water Using Titanium Electrodes. Journal of the Electrochemical Society, 2021, 168, 063502.	2.9	4

LAUREN F GREENLEE

#	Article	IF	CITATIONS
55	Electrochemical recovery of phosphate from synthetic wastewater with enhanced salinity. Electrochimica Acta, 2022, 426, 140848.	5.2	4
56	Ultrafiltration Membranes Functionalized with Copper Oxide and Zwitterions for Fouling Resistance. Membranes, 2022, 12, 544.	3.0	3
57	Characterization of Stabilized Zero Valent Iron Nanoparticles. , 2012, , 173-188.		2
58	Disinfection/ammonia removal from aquaculture wastewater and disinfection of irrigation water using electrochemical flow cells: A case study in Hawaii. Water Environment Research, 2021, 93, 2149-2168.	2.7	2
59	Comparative study of trichloroethylene removal by different carbons and FeNi-carbon composites. Journal of Environmental Chemical Engineering, 2021, 9, 106268.	6.7	2
60	Salt screening analysis for reverse electrodialysis. Sustainable Energy and Fuels, 2021, 5, 6135-6144.	4.9	2
61	Interactions of Polyproline II Helix Peptides with Iron(III) Oxide. ChemistrySelect, 2019, 4, 6784-6789.	1.5	1
62	Nickel-Iron Alloy Nanoparticle Characteristics Pre- and Post-Reaction With Orange G. IEEE Open Journal of Nanotechnology, 2021, 2, 16-25.	2.0	1
63	Real-Time Interaction of Mixed Species Biofilm With Silver Nanoparticles Using QCM-D. Colloids and Interface Science Communications, 2019, 28, 49-53.	4.1	0
64	The electrochemistry of ammonium dihydrogen phosphate, disodium phosphate, ammonium chloride on Mgâ€based and polycrystalline Pt electrodes. Electrochemical Science Advances, 0, , e2100067.	2.8	0
65	Electrochemical Activation of Silicon: Enhancing Hydrogen Production from FeNi Electrocatalysts. Energy & Fuels, 0, , .	5.1	Ο
66	(Digital Presentation) Magnesium Shot Filled Electrochemical Packed Bed Reactor for Phosphate Recovery. ECS Meeting Abstracts, 2022, MA2022-01, 1208-1208.	0.0	0
67	(Digital Presentation) Electrochemical Recovery of Ammonium and Phosphate from Municipal Wastewater Sources: Kinetics and Water Chemistry. ECS Meeting Abstracts, 2022, MA2022-01, 1816-1816.	0.0	0
68	(Digital Presentation) Time-Resolved Operando XAS of Fe _x Ni _{100-X} O _y Electrocatalysts for the Oxygen Evolution Reaction Reveals Temporal Shift in Ni K-Edge during Ni ^{2+/3+} Redox Reaction. ECS Meeting Abstracts, 2022, MA2022-01, 1357-1357.	0.0	0
69	(Digital Presentation) Enhanced Electrochemical Phosphate Recovery from Wastewater: Implications of Pulsating Anode Potential. ECS Meeting Abstracts, 2022, MA2022-01, 1813-1813.	0.0	Ο
70	Nitrate Reduction By Hydrophobic, Negatively, and Positively Charged Peptide-Coated Au Electrode. ECS Meeting Abstracts, 2022, MA2022-01, 1800-1800.	0.0	0