Susumu Seino, DMSci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5489763/publications.pdf

Version: 2024-02-01

36 papers 3,912 citations

257450 24 h-index 36 g-index

36 all docs 36 docs citations

36 times ranked 3988 citing authors

#	Article	IF	CITATIONS
1	Increased glycolysis affects \hat{I}^2 -cell function and identity in aging and diabetes. Molecular Metabolism, 2022, 55, 101414.	6.5	16
2	O-GlcNAcylation of myocyte-specific enhancer factor 2D negatively regulates insulin secretion from pancreatic \hat{l}^2 -cells. Biochemical and Biophysical Research Communications, 2022, 605, 90-96.	2.1	3
3	Glutamate is an essential mediator in glutamineâ€amplified insulin secretion. Journal of Diabetes Investigation, 2021, 12, 920-930.	2.4	20
4	Tumorâ€like features of gene expression and metabolic profiles in enlarged pancreatic islets are associated with impaired incretinâ€induced insulin secretion in obese diabetes: A study of Zucker fatty diabetes mellitus rat. Journal of Diabetes Investigation, 2020, 11, 1434-1447.	2.4	3
5	Arsenic modifies serotonin metabolism through glucuronidation in pancreatic \hat{l}^2 -cells. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E464-E474.	3.5	16
6	Inhibition of SNAT5 Induces Incretin-Responsive State From Incretin-Unresponsive State in Pancreatic \hat{l}^2 -Cells: Study of \hat{l}^2 -Cell Spheroid Clusters as a Model. Diabetes, 2018, 67, 1795-1806.	0.6	10
7	Somatostatin Is Only Partly Required for the Glucagonostatic Effect of Glucose but Is Necessary for the Glucagonostatic Effect of KATP Channel Blockers. Diabetes, 2018, 67, 2239-2253.	0.6	33
8	βâ€Cell signalling and insulin secretagogues: A path for improved diabetes therapy. Diabetes, Obesity and Metabolism, 2017, 19, 22-29.	4.4	59
9	Essential roles of aspartate aminotransferase 1 and vesicular glutamate transporters in \hat{l}^2 -cell glutamate signaling for incretin-induced insulin secretion. PLoS ONE, 2017, 12, e0187213.	2.5	15
10	$\hat{l}^2\hat{a}$ €Cell glutamate signaling: Its role in incretinâ€induced insulin secretion. Journal of Diabetes Investigation, 2016, 7, 38-43.	2.4	14
11	Structure and functional roles of Epac2 (Rapgef4). Gene, 2016, 575, 577-583.	2.2	49
12	A Novel Diphenylthiosemicarbazide Is a Potential Insulin Secretagogue for Anti-Diabetic Agent. PLoS ONE, 2016, 11, e0164785.	2.5	3
13	Liraglutide Improves Pancreatic Beta Cell Mass and Function in Alloxan-Induced Diabetic Mice. PLoS ONE, 2015, 10, e0126003.	2.5	55
14	Characterization of the Prediabetic State in a Novel Rat Model of Type 2 Diabetes, the ZFDM Rat. Journal of Diabetes Research, 2015, 2015, 1-8.	2.3	12
15	Identification of putative biomarkers for prediabetes by metabolome analysis of rat models of type 2 diabetes. Metabolomics, 2015, 11, 1277-1286.	3.0	28
16	Role of Epac2A/Rap1 Signaling in Interplay Between Incretin and Sulfonylurea in Insulin Secretion. Diabetes, 2015, 64, 1262-1272.	0.6	52
17	Glutamate Acts as a Key Signal Linking Glucose Metabolism to Incretin/cAMP Action to Amplify Insulin Secretion. Cell Reports, 2014, 9, 661-673.	6.4	128
18	Antidiabetic Sulfonylureas and cAMP Cooperatively Activate Epac2A. Science Signaling, 2013, 6, ra94.	3.6	42

#	Article	lF	Citations
19	A Novel Rat Model of Type 2 Diabetes: The Zucker Fatty Diabetes Mellitus ZFDM Rat. Journal of Diabetes Research, 2013, 2013, 1-9.	2.3	68
20	Rim $2\hat{l}\pm$ Determines Docking and Priming States in Insulin Granule Exocytosis. Cell Metabolism, 2010, 12, 117-129.	16.2	97
21	Establishment of new clonal pancreatic βâ€eell lines (MIN6â€K) useful for study of incretin/cyclic adenosine monophosphate signaling. Journal of Diabetes Investigation, 2010, 1, 137-142.	2.4	36
22	Tracing phenotypic reversibility of pancreatic βâ€cells <i>in vitro</i> . Journal of Diabetes Investigation, 2010, 1, 242-251.	2.4	4
23	The cAMP Sensor Epac2 Is a Direct Target of Antidiabetic Sulfonylurea Drugs. Science, 2009, 325, 607-610.	12.6	198
24	Critical role of the Nâ€terminal cyclic AMPâ€binding domain of Epac2 in its subcellular localization and function. Journal of Cellular Physiology, 2009, 219, 652-658.	4.1	82
25	Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19333-19338.	7.1	358
26	Distinct Effects of Glucose-Dependent Insulinotropic Polypeptide and Glucagon-Like Peptide-1 on Insulin Secretion and Gut Motility. Diabetes, 2005, 54, 1056-1063.	0.6	103
27	PKA-Dependent and PKA-Independent Pathways for cAMP-Regulated Exocytosis. Physiological Reviews, 2005, 85, 1303-1342.	28.8	499
28	Interaction of ATP Sensor, cAMP Sensor, Ca2+ Sensor, and Voltage-dependent Ca2+ Channel in Insulin Granule Exocytosis. Journal of Biological Chemistry, 2004, 279, 7956-7961.	3.4	152
29	Piccolo, a Ca2+ Sensor in Pancreatic β-Cells. Journal of Biological Chemistry, 2002, 277, 50497-50502.	3.4	179
30	Normalization of Intracellular Ca2+ Induces a Glucose-responsive State in Glucose-unresponsive β-Cells. Journal of Biological Chemistry, 2002, 277, 25277-25282.	3.4	21
31	Characterization of the Gene EPAC2: Structure, Chromosomal Localization, Tissue Expression, and Identification of the Liver-Specific Isoform. Genomics, 2001, 78, 91-98.	2.9	57
32	Critical Role of cAMP-GEFII·Rim2 Complex in Incretin-potentiated Insulin Secretion. Journal of Biological Chemistry, 2001, 276, 46046-46053.	3.4	313
33	cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nature Cell Biology, 2000, 2, 805-811.	10.3	431
34	Insulin secretion and differential gene expression in glucose-responsive and -unresponsive MIN6 sublines. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E773-E781.	3.5	116
35	ATP-SENSITIVE POTASSIUM CHANNELS: A Model of Heteromultimeric Potassium Channel/Receptor Assemblies. Annual Review of Physiology, 1999, 61, 337-362.	13.1	458
36	Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB Journal, 1995, 9, 686-691.	0.5	182