
Christodoulos Xinaris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5489699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell Hypertrophy: A "Biophysical Roadblock―to Reversing Kidney Injury. Frontiers in Cell and Developmental Biology, 2022, 10, 854998.	3.7	3
2	Thyroid Hormone Signalling in Human Evolution and Disease: A Novel Hypothesis. Journal of Clinical Medicine, 2022, 11, 43.	2.4	6
3	A protocol for the generation of EPO - Producing neural crest cells from human induced pluripotent stem cells. MethodsX, 2022, 9, 101753.	1.6	0
4	Translational Block in Stroke: A Constructive and "Out-of-the-Box―Reappraisal. Frontiers in Neuroscience, 2021, 15, 652403.	2.8	21
5	Human iPSC-derived neural crest stem cells can produce EPO and induce erythropoiesis in anemic mice. Stem Cell Research, 2021, 55, 102476.	0.7	4
6	Unravelling the Role of PAX2 Mutation in Human Focal Segmental Glomerulosclerosis. Biomedicines, 2021, 9, 1808.	3.2	2
7	Post-translational modifications by SIRT3 de-2-hydroxyisobutyrylase activity regulate glycolysis and enable nephrogenesis. Scientific Reports, 2021, 11, 23580.	3.3	10
8	Cyst segmentation on kidney tubules by means of U-Net deep-learning models. , 2021, , .		3
9	Lymphotoxin-Beta Receptor Signaling Is Crucial for the Vascularization of Transplanted Metanephros. American Journal of Pathology, 2020, 190, 33-36.	3.8	Ο
10	Thyroid Hormone Signalling: From the Dawn of Life to the Bedside. Journal of Molecular Evolution, 2020, 88, 88-103.	1.8	26
11	Thyroid Hormone Signalling Alteration in Diabetic Nephropathy and Cardiomyopathy: a "Switch―to the Foetal Gene Programme. Current Diabetes Reports, 2020, 20, 58.	4.2	7
12	Kidney Organoids as Disease Models: Strengths, Weaknesses and Perspectives. Frontiers in Physiology, 2020, 11, 563981.	2.8	28
13	Diabetic Nephropathy: Novel Molecular Mechanisms and Therapeutic Targets. Frontiers in Pharmacology, 2020, 11, 586892.	3.5	47
14	iPS, organoids and 3D models as advanced tools for in vitro toxicology. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 136-140.	1.5	10
15	Engineering kidney tissues for polycystic kidney disease modeling and drug discovery. Methods in Cell Biology, 2019, 153, 113-132.	1.1	4
16	Organoids for replacement therapy. Current Opinion in Organ Transplantation, 2019, 24, 555-561.	1.6	21
17	Alteration of thyroid hormone signaling triggers the diabetes-induced pathological growth, remodeling, and dedifferentiation of podocytes. JCI Insight, 2019, 4, .	5.0	21
18	Engineered Kidney Tubules for Modeling Patient-Specific Diseases and Drug Discovery. EBioMedicine, 2018, 33, 253-268	6.1	27

#	Article	IF	CITATIONS
19	Developmental Approaches to Kidney Regeneration. , 2017, , 1039-1050.		0
20	Generation of functional podocytes from human induced pluripotent stem cells. Stem Cell Research, 2016, 17, 130-139.	0.7	65
21	Generation of Functional Kidney Organoids In Vivo Starting from a Single-Cell Suspension. Methods in Molecular Biology, 2016, 1576, 101-112.	0.9	3
22	Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 1400-1411.	6.1	51
23	Renal Primordia Activate Kidney Regenerative Events in a Rat Model of Progressive Renal Disease. PLoS ONE, 2015, 10, e0120235.	2.5	17
24	Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts. Stem Cell Reports, 2015, 4, 685-698.	4.8	27
25	Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Scientific Reports, 2015, 5, 8826.	3.3	88
26	Organoid Models and Applications in Biomedical Research. Nephron, 2015, 130, 191-199.	1.8	2,247
27	Reforming the Kidney Starting from a Single-Cell Suspension. Nephron Experimental Nephrology, 2014, 126, 107-112.	2.2	5
28	A Novel Strategy to Enhance Mesenchymal Stem Cell Migration Capacity and Promote Tissue Repair in an Injury Specific Fashion. Cell Transplantation, 2013, 22, 423-436.	2.5	109
29	In Vivo Maturation of Functional Renal Organoids Formed from Embryonic Cell Suspensions. Journal of the American Society of Nephrology: JASN, 2012, 23, 1857-1868.	6.1	156
30	Human Amniotic Fluid Stem Cell Preconditioning Improves Their Regenerative Potential. Stem Cells and Development, 2012, 21, 1911-1923.	2.1	112
31	Bone Marrow Mesenchymal Stem Cells in Organ Repair and Strategies to Optimize their Efficacy. , 2011, , 299-312.		1
32	Thyroid hormone and "cardiac metamorphosis― Potential therapeutic implications. , 2008, 118, 277-294.		55
33	Thyroid hormone and myocardial ischaemia. Journal of Steroid Biochemistry and Molecular Biology, 2008, 109, 314-322.	2.5	11
34	TNF-α Administration in Neonatal Cardiomyocytes is Associated with Differential Expression of Thyroid Hormone Receptors: A Response Prevented by T ₃ . Hormone and Metabolic Research, 2008, 40, 731-734.	1.5	15
35	Time-dependent changes in the expression of thyroid hormone receptor $\hat{i}\pm 1$ in the myocardium after acute myocardial infarction: possible implications in cardiac remodelling. European Journal of Endocrinology, 2007, 156, 415-424.	3.7	43
36	Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. European Journal of Cardio-thoracic Surgery, 2007, 32, 333-339.	1.4	84

#	Article	IF	CITATIONS
37	Pharmacological inhibition of TR?1 receptor potentiates the thyroxine effect on body weight reduction in rats: potential therapeutic implications in controlling body weight. Diabetes, Obesity and Metabolism, 2007, 9, 136-138.	4.4	11
38	Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: Potential therapeutic implications in reversing cardiac remodeling?. Molecular and Cellular Biochemistry, 2007, 297, 65-72.	3.1	52
39	Enhanced tolerance of the rat myocardium to ischemia and reperfusion injury early after acute myocardial infarction. Basic Research in Cardiology, 2007, 102, 327-333.	5.9	29
40	High glucose protects embryonic cardiac cells against simulated ischemia. Molecular and Cellular Biochemistry, 2006, 284, 87-93.	3.1	21
41	Hyperthyroid Hearts Display a Phenotype of Cardioprotection Against Ischemic Stress: A Possible Involvement of Heat Shock Protein 70. Hormone and Metabolic Research, 2006, 38, 308-313.	1.5	44
42	Thyroid hormone receptors $\hat{l}\pm 1$ and $\hat{l}^2 1$ are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia-reperfusion. Basic Research in Cardiology, 2005, 100, 422-432.	5.9	60
43	Propylthiouracil-induced hypothyroidism is associated with increased tolerance of the isolated rat heart to ischaemia-reperfusion. Journal of Endocrinology, 2003, 178, 427-435.	2.6	63