Mahmoud A Albreem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5489287/publications.pdf

Version: 2024-02-01

37 papers

1,028 citations

16 h-index 32 g-index

43 all docs 43 docs citations

times ranked

43

798 citing authors

#	Article	IF	CITATIONS
1	Beamspace channel estimation in wideband lens antenna array-based mmWave mMIMO-OFDM systems under beam squint. Physical Communication, 2022, 50, 101512.	2.1	2
2	Deep Learning for Massive MIMO Uplink Detectors. IEEE Communications Surveys and Tutorials, 2022, 24, 741-766.	39.4	32
3	Data detection in decentralized and distributed massive MIMO networks. Computer Communications, 2022, 189, 79-99.	5.1	O
4	Low Complexity Linear Detectors for Massive MIMO: A Comparative Study. IEEE Access, 2021, 9, 45740-45753.	4.2	28
5	Overview of Precoding Techniques for Massive MIMO. IEEE Access, 2021, 9, 60764-60801.	4.2	60
6	Long-Term Techno-Economic Analysis of Sustainable and Zero Grid Cellular Base Station. IEEE Access, 2021, 9, 54159-54172.	4.2	18
7	Efficient Iterative Massive MIMO Detectors Based on Iterative Matrix Inversion Methods. Advances in Wireless Technologies and Telecommunication Book Series, 2021, , 175-195.	0.4	O
8	A Low Complexity Detector for Massive MIMO Uplink Systems. The National Academy of Sciences, India, 2021, 44, 545.	1.3	1
9	Toward Optimal Cost-Energy Management Green Framework for Sustainable Future Wireless Networks. Computers, Materials and Continua, 2021, 68, 1321-1339.	1.9	2
10	Optimal Cost-Aware Paradigm for Off-Grid Green Cellular Networks in Oman. Computers, Materials and Continua, 2021, 68, 2665-2680.	1.9	2
11	FPGA Implementation of Stair Matrix based Massive MIMO Detection., 2021,,.		1
12	Design and Experimental Analysis of Multiband Compound Reconfigurable 5G Antenna for Sub-6 GHz Wireless Applications. Wireless Communications and Mobile Computing, 2021, 2021, 1-14.	1.2	20
13	A comprehensive study on the role of advanced technologies in 5G based smart hospital. AEJ - Alexandria Engineering Journal, 2021, 60, 5527-5536.	6.4	30
14	Green Internet of Things (GIoT): Applications, Practices, Awareness, and Challenges. IEEE Access, 2021, 9, 38833-38858.	4.2	66
15	Extended Signed Quadrature Spatial Modulation System With Multi-User Support. IEEE Transactions on Broadcasting, 2021, 67, 868-878.	3.2	6
16	Comparative Analysis of Data Detection Techniques for 5G Massive MIMO Systems. Sustainability, 2020, 12, 9281.	3.2	10
17	Efficient Hybrid Linear Massive MIMO Detector Using Gauss–Seidel And Successive Over-Relaxation. International Journal of Wireless Information Networks, 2020, 27, 551-557.	2.7	6
18	Future 5G Network Based Smart Hospitals: Hybrid Detection Technique for Latency Improvement. IEEE Access, 2020, 8, 153240-153249.	4.2	47

#	Article	IF	CITATIONS
19	Efficient initialisation of iterative linear massive MIMO detectors using a stair matrix. Electronics Letters, 2020, 56, 50-52.	1.0	16
20	A Robust Hybrid Iterative Linear Detector for Massive MIMO Uplink Systems. Symmetry, 2020, 12, 306.	2.2	10
21	Impact of Stair and Diagonal Matrices in Iterative Linear Massive MIMO Uplink Detectors for 5G Wireless Networks. Symmetry, 2020, 12, 71.	2.2	5
22	A Low Complexity Near-Optimal Iterative Linear Detector for Massive MIMO in Realistic Radio Channels of 5G Communication Systems. Entropy, 2020, 22, 388.	2.2	18
23	Sixth Generation (6G) Wireless Networks: Vision, Research Activities, Challenges and Potential Solutions. Symmetry, 2020, 12, 676.	2.2	207
24	Deep learning applications to combat the dissemination of COVID-19 disease: a review. European Review for Medical and Pharmacological Sciences, 2020, 24, 11455-11460.	0.7	25
25	Application of machine intelligence technology in the detection of vaccines and medicines for SARS-CoV-2. European Review for Medical and Pharmacological Sciences, 2020, 24, 11977-11981.	0.7	11
26	MIMO-Terahertz in 6G Nano-Communications: Channel Modeling and Analysis. Computers, Materials and Continua, 2020, 66, 263-274.	1.9	27
27	Matrix Decomposition for Massive MIMO Detection. , 2020, , .		7
28	Artificial intelligence technology for diagnosing COVID-19 cases: a review of substantial issues. European Review for Medical and Pharmacological Sciences, 2020, 24, 9226-9233.	0.7	7
29	Massive MIMO Detection Techniques: A Survey. IEEE Communications Surveys and Tutorials, 2019, 21, 3109-3132.	39.4	264
30	Robust Hybrid Beamforming Scheme for Millimeter-Wave Massive-MIMO 5G Wireless Networks. Symmetry, 2019, 11, 1424.	2.2	38
31	Encryption Techniques and Wireless Power Transfer Schemes. Indonesian Journal of Electrical Engineering and Computer Science, 2018, 9, 183.	0.8	1
32	A review: detection techniques for LTE system. Telecommunication Systems, 2016, 63, 153-168.	2.5	16
33	An Efficient Lattice Sphere Decoding Technique for Multi-Carrier Systems. Wireless Personal Communications, 2015, 82, 1825-1831.	2.7	9
34	Regularized Lattice Sphere Decoding for Block Data Transmission Systems. Wireless Personal Communications, 2015, 82, 1833-1850.	2.7	15
35	Lattice Sphere Decoding for Data Transmission Systems with Special Channel Matrices. Wireless Personal Communications, 2014, 79, 265-277.	2.7	8
36	Reduced complexity optimum detector for block data transmission systems using Lattice Sphere Decoding technique. IEICE Electronics Express, 2011, 8, 644-649.	0.8	10

#	Article	IF	CITATIONS
37	Matlab Simulink Simulation of Respiratory Effort Energy Harvester Using Electromagnetic Generator. Applied Mechanics and Materials, 0, 793, 417-421.	0.2	O