BÃ;lint Czðcz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5488608/publications.pdf

Version: 2024-02-01

ΒΔ̃:μΝΤ **C**ΖΔΩΩCZ

#	Article	IF	CITATIONS
1	Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 2009, 24, 686-693.	8.7	1,031
2	An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosystem Services, 2016, 17, 14-23.	5.4	418
3	When we cannot have it all: Ecosystem services trade-offs in the context of spatial planning. Ecosystem Services, 2018, 29, 566-578.	5.4	231
4	Selecting methods for ecosystem service assessment: A decision tree approach. Ecosystem Services, 2018, 29, 481-498.	5.4	155
5	A comparative framework for broadâ€scale plotâ€based vegetation classification. Applied Vegetation Science, 2015, 18, 543-560.	1.9	126
6	Where concepts meet the real world: A systematic review of ecosystem service indicators and their classification using CICES. Ecosystem Services, 2018, 29, 145-157.	5.4	112
7	Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Annals of Forest Science, 2011, 68, 99-108.	2.0	95
8	Stakeholders' perspectives on the operationalisation of the ecosystem service concept: Results from 27 case studies. Ecosystem Services, 2018, 29, 552-565.	5.4	94
9	Key criteria for developing ecosystem service indicators to inform decision making. Ecological Indicators, 2018, 95, 417-426.	6.3	93
10	Regeneration of sandy old-fields in the forest steppe region of Hungary. Plant Biosystems, 2011, 145, 715-729.	1.6	90
11	Wild plants used for food by Hungarian ethnic groups living in the Carpathian Basin. Acta Societatis Botanicorum Poloniae, 2012, 81, 381-396.	0.8	85
12	Testing the ability of functional diversity indices to detect trait convergence and divergence using individualâ€based simulation. Methods in Ecology and Evolution, 2016, 7, 114-126.	5.2	80
13	Integrating methods for ecosystem service assessment: Experiences from real world situations. Ecosystem Services, 2018, 29, 499-514.	5.4	80
14	Practical application of spatial ecosystem service models to aid decision support. Ecosystem Services, 2018, 29, 465-480.	5.4	72
15	Implementation and application of multiple potential natural vegetation models – a case study of Hungary. Journal of Vegetation Science, 2017, 28, 1260-1269.	2.2	63
16	The influence of environment, management and site context on species composition of summer arable weed vegetation in <scp>H</scp> ungary. Applied Vegetation Science, 2012, 15, 136-144.	1.9	57
17	Drivers of grassland loss in Hungary during the post-socialist transformation (1987–1999). Landscape Ecology, 2013, 28, 789-803.	4.2	55
18	Flowering phenological changes in relation to climate change in Hungary. International Journal of Biometeorology, 2016, 60, 1347-1356.	3.0	44

BÃilint Czúcz

#	Article	IF	CITATIONS
19	Remote Sensing and GIS for Habitat Quality Monitoring: New Approaches and Future Research. Remote Sensing, 2015, 7, 7987-7994.	4.0	40
20	The link between landscape pattern and vegetation naturalness on a regional scale. Ecological Indicators, 2017, 81, 252-259.	6.3	35
21	Intermediate ecosystem services: An empty concept?. Ecosystem Services, 2017, 27, 124-126.	5.4	33
22	Mapping and assessing ecosystem services in the EU - Lessons learned from the ESMERALDA approach of integration. One Ecosystem, 0, 3, .	0.0	33
23	Regional habitat pattern of the Danube-Tisza Interfluve in Hungary II. Acta Botanica Hungarica, 2008, 50, 19-60.	0.3	29
24	Weed vegetation of poppy (<i>Papaver somniferum</i>) fields in Hungary: effects of management and environmental factors on species composition. Weed Research, 2011, 51, 621-630.	1.7	28
25	Rural social–ecological systems navigating institutional transitions: case study from transylvania (romania). Ecosystem Health and Sustainability, 2016, 2, .	3.1	28
26	Phenological patterns of flowering across biogeographical regions of Europe. International Journal of Biometeorology, 2017, 61, 1347-1358.	3.0	27
27	Birds and plants: Comparing biodiversity indicators in eight lowland agricultural mosaic landscapes in Hungary. Ecological Indicators, 2017, 73, 566-573.	6.3	26
28	Ecosystem service indicators along the cascade: How do assessment and mapping studies position their indicators?. Ecological Indicators, 2020, 118, 106729.	6.3	23
29	A conceptual framework and practical structure for implementingÂecosystem condition accounts. One Ecosystem, 0, 5, .	0.0	23
30	A common typology for ecosystem characteristics and ecosystem condition variables. One Ecosystem, 0, 6, .	0.0	21
31	A review of ecosystem condition accounts: lessons learned and options for further development. One Ecosystem, 0, 5, .	0.0	21
32	Using the natural capital index framework as a scalable aggregation methodology for regional biodiversity indicators. Journal for Nature Conservation, 2012, 20, 144-152.	1.8	20
33	Glossary of ecosystem services mapping and assessment terminology. One Ecosystem, 0, 3, .	0.0	20
34	Disentangling the ecosystem service â€~flood regulation': Mechanisms and relevant ecosystem condition characteristics. Ambio, 2022, 51, 1855-1870.	5.5	20
35	The natural capital index of Hungary. Acta Botanica Hungarica, 2008, 50, 161-177.	0.3	19
36	The Impending Peak and Decline of Petroleum Production: an Underestimated Challenge for Conservation of Ecological Integrity. Conservation Biology, 2010, 24, 948-956.	4.7	19

BÃilint Czúcz

#	Article	IF	CITATIONS
37	Selection criteria for ecosystem condition indicators. Ecological Indicators, 2021, 133, 108376.	6.3	18
38	An indicator framework for the climatic adaptive capacity of natural ecosystems. Journal of Vegetation Science, 2011, 22, 711-725.	2.2	14
39	Weed species composition of conventional soyabean crops in Hungary is determined by environmental, cultural, weed management and site variables. Weed Research, 2016, 56, 470-481.	1.7	14
40	How to design a transdisciplinary regional ecosystem service assessment: a case study from Romania, Eastern Europe. One Ecosystem, 0, 3, .	0.0	14
41	Relating Ambrosia artemisiifolia and other weeds to the management of Hungarian sunflower crops. Journal of Pest Science, 2013, 86, 621-631.	3.7	13
42	The impact of management on weeds and aquatic plant communities in <scp>H</scp> ungarian rice crops. Weed Research, 2014, 54, 388-397.	1.7	13
43	Weak evidence of long-term extinction debt in Pannonian dry sand grasslands. Agriculture, Ecosystems and Environment, 2014, 182, 137-143.	5.3	12
44	Accurate prediction of ice disturbance in European deciduous forests with generalized linear models: a comparison of field-based and airborne-based approaches. European Journal of Forest Research, 2012, 131, 1905-1915.	2.5	8
45	Berries, greens, and medicinal herbs—mapping and assessing wild plants as an ecosystem service in Transylvania (Romania). Journal of Ethnobiology and Ethnomedicine, 2020, 16, 13.	2.6	7
46	Drivers of Ambrosia artemisiifolia abundance in arable fields along the Austrian-Hungarian border. Preslia, 2019, 91, 369-389.	2.8	7
47	Ecosystem condition underpins the generation of ecosystem services: an accounting perspective. One Ecosystem, 0, 7, .	0.0	7
48	When herbicides don't really matter: Weed species composition of oil pumpkin (Cucurbita pepo L.) fields in Hungary. Crop Protection, 2018, 110, 236-244.	2.1	6
49	Weed Composition in Hungarian Phacelia (Phacelia tanacetifolia Benth.) Seed Production: Could Tine Harrow Take over Chemical Management?. Agronomy, 2022, 12, 891.	3.0	5
50	Rise and fall of Stachys annua (L.) L. in the Carpathian Basin: a historical review and prospects for its revival. Genetic Resources and Crop Evolution, 2021, 68, 3039-3053.	1.6	4
51	The role of politics in the life of a conservation incentive: An analysis of agri-environment schemes in Hungary. Biological Conservation, 2021, 259, 109172.	4.1	4
52	Integrated Approach to Estimate Land Use Intensity for Hungary. Journal of Environmental Geography, 2019, 12, 45-52.	0.5	4
53	Regional scale habitat-based vulnerability assessment of the natural ecosystems. IOP Conference Series: Earth and Environmental Science, 2009, 6, 442006.	0.3	0
54	Modelling changes in ecosystem service supply based on vegetation projections. IOP Conference Series: Earth and Environmental Science, 2009, 6, 302011.	0.3	0

#	Article	IF	CITATIONS
55	Modelling changes in ecosystem service supply based on vegetation projections. IOP Conference Series: Earth and Environmental Science, 2009, 6, 302011.	0.3	0
56	Regional scale habitat-based vulnerability assessment of the natural ecosystems. IOP Conference Series: Earth and Environmental Science, 2009, 6, 442006.	0.3	0