John O'Shea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5485861/publications.pdf Version: 2024-02-01

ΙΟΗΝ Ο'SHEA

#	Article	IF	CITATIONS
1	Evolving Views of Long Noncoding RNAs and Epigenomic Control of Lymphocyte State and Memory. Cold Spring Harbor Perspectives in Biology, 2022, 14, a037952.	5.5	6
2	Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nature Reviews Rheumatology, 2022, 18, 133-145.	8.0	193
3	Jakinibs of All Trades: Inhibiting Cytokine Signaling in Immune-Mediated Pathologies. Pharmaceuticals, 2022, 15, 48.	3.8	16
4	BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. Nature Immunology, 2021, 22, 370-380.	14.5	75
5	Multi-Dimensional Gene Regulation in Innate and Adaptive Lymphocytes: A View From Regulomes. Frontiers in Immunology, 2021, 12, 655590.	4.8	12
6	Immunology Lessons from the SARS-CoV-2 Pandemic. Annual Review of Immunology, 2021, 39, v-vii.	21.8	0
7	JAK inhibitors: Ten years after. European Journal of Immunology, 2021, 51, 1615-1627.	2.9	49
8	Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nature Communications, 2021, 12, 3391.	12.8	93
9	A Decade of JAK Inhibitors: What Have We Learned and What May Be the Future?. Arthritis and Rheumatology, 2021, 73, 2166-2178.	5.6	43
10	MicroRNA-directed pathway discovery elucidates an miR-221/222–mediated regulatory circuit in class switch recombination. Journal of Experimental Medicine, 2021, 218, .	8.5	6
11	Compromised counterselection by FAS creates an aggressive subtype of germinal center lymphoma. Journal of Experimental Medicine, 2021, 218, .	8.5	14
12	Cholesterol 25-hydroxylase is a metabolic switch to constrain T cell–mediated inflammation in the skin. Science Immunology, 2021, 6, eabb6444.	11.9	7
13	Rapid Enhancer Remodeling and Transcription Factor Repurposing Enable High Magnitude Gene Induction upon Acute Activation of NK Cells. Immunity, 2020, 53, 745-758.e4.	14.3	46
14	Divergent Role for STAT5 in the Adaptive Responses of Natural Killer Cells. Cell Reports, 2020, 33, 108498.	6.4	32
15	Environmental arginine controls multinuclear giant cell metabolism and formation. Nature Communications, 2020, 11, 431.	12.8	37
16	Inhibition of IL-2 responsiveness by IL-6 is required for the generation of GC-T _{FH} cells. Science Immunology, 2019, 4, .	11.9	84
17	The macrophage-specific V-ATPase subunit ATP6V0D2 restricts inflammasome activation and bacterial infection by facilitating autophagosome-lysosome fusion. Autophagy, 2019, 15, 960-975.	9.1	101
18	Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nature Immunology, 2019, 20, 890-901.	14.5	361

#	Article	IF	CITATIONS
19	The Î ³ c Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity, 2019, 50, 832-850.	14.3	248
20	Janus kinases to jakinibs: from basic insights to clinical practice. Rheumatology, 2019, 58, i4-i16.	1.9	111
21	JAK Inhibition Differentially Affects NK Cell and ILC1 Homeostasis. Frontiers in Immunology, 2019, 10, 2972.	4.8	6
22	Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science, 2019, 363, .	12.6	219
23	Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell, 2018, 172, 784-796.e18.	28.9	323
24	NCR ⁺ ILC3 maintain larger STAT4 reservoir via Tâ€BET to regulate type 1 features upon ILâ€⊋3 stimulation in mice. European Journal of Immunology, 2018, 48, 1174-1180.	2.9	33
25	STAT5B: A Differential Regulator of the Life and Death of CD4+ Effector Memory T Cells. Journal of Immunology, 2018, 200, 110-118.	0.8	29
26	Translational and clinical advances in JAK-STAT biology: The present and future of jakinibs. Journal of Leukocyte Biology, 2018, 104, 499-514.	3.3	122
27	BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nature Immunology, 2017, 18, 813-823.	14.5	113
28	The Transcription Factor T-bet Limits Amplification of Type I IFN Transcriptome and Circuitry in T Helper 1 Cells. Immunity, 2017, 46, 983-991.e4.	14.3	79
29	Mechanisms and consequences of Jak–STAT signaling in the immune system. Nature Immunology, 2017, 18, 374-384.	14.5	870
30	Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells. Journal of Experimental Medicine, 2017, 214, 2999-3014.	8.5	85
31	JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nature Reviews Drug Discovery, 2017, 16, 843-862.	46.4	759
32	Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction. Arthritis and Rheumatology, 2017, 69, 148-160.	5.6	183
33	Epigenomic Views of Innate Lymphoid Cells. Frontiers in Immunology, 2017, 8, 1579.	4.8	26
34	Developmental Acquisition of Regulomes Underlies Innate Lymphoid Cell Functionality. Cell, 2016, 165, 1120-1133.	28.9	273
35	BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers. Nature Immunology, 2016, 17, 851-860.	14.5	221
36	Targeting cytokine signaling in autoimmunity: back to the future and beyond. Current Opinion in Immunology, 2016, 43, 89-97.	5.5	47

#	Article	IF	CITATIONS
37	Memory Stem T Cells in Autoimmune Disease: High Frequency of Circulating CD8+ Memory Stem Cells in Acquired Aplastic Anemia. Journal of Immunology, 2016, 196, 1568-1578.	0.8	74
38	Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nature Reviews Rheumatology, 2016, 12, 25-36.	8.0	468
39	The Histone Variant MacroH2A1.2 Is Necessary for the Activation of Muscle Enhancers and Recruitment of the Transcription Factor Pbx1. Cell Reports, 2016, 14, 1156-1168.	6.4	49
40	An autoregulatory enhancer controls mammary-specific STAT5 functions. Nucleic Acids Research, 2016, 44, 1052-1063.	14.5	44
41	IL-10 induces a STAT3-dependent autoregulatory loop in T _H 2 cells that promotes Blimp-1 restriction of cell expansion via antagonism of STAT5 target genes. Science Immunology, 2016, 1, .	11.9	26
42	Signal transducer and activator of transcription 5 (STAT5) paralog dose governs T cell effector and regulatory functions. ELife, 2016, 5, .	6.0	74
43	PAPST, a User Friendly and Powerful Java Platform for ChIP-Seq Peak Co-Localization Analysis and Beyond. PLoS ONE, 2015, 10, e0127285.	2.5	10
44	The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells. ELife, 2015, 4, .	6.0	48
45	A Metabolic Switch for Th17 Pathogenicity. Cell, 2015, 163, 1308-1310.	28.9	9
46	Celastrol, a Chinese herbal compound, controls autoimmune inflammation by altering the balance of pathogenic and regulatory T cells in the target organ. Clinical Immunology, 2015, 157, 228-238.	3.2	106
47	Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature, 2015, 520, 558-562.	27.8	323
48	The JAK-STAT Pathway: Impact on Human Disease and Therapeutic Intervention. Annual Review of Medicine, 2015, 66, 311-328.	12.2	1,074
49	Asymmetric Action of STAT Transcription Factors Drives Transcriptional Outputs and Cytokine Specificity. Immunity, 2015, 42, 877-889.	14.3	137
50	Selective targeting of JAK/STAT signaling is potentiated by Bcl-xL blockade in IL-2–dependent adult T-cell leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12480-12485.	7.1	81
51	Super-enhancers: Asset management in immune cell genomes. Trends in Immunology, 2015, 36, 519-526.	6.8	36
52	Mechanisms of Jak/STAT Signaling in Immunity and Disease. Journal of Immunology, 2015, 194, 21-27.	0.8	440
53	Reversal of CD8 T-Cell–Mediated Mucocutaneous Graft-Versus-Host-Like Disease by the JAK Inhibitor Tofacitinib. Journal of Investigative Dermatology, 2014, 134, 992-1000.	0.7	61
54	In Search of Magic Bullets: The Golden Age of Immunotherapeutics. Cell, 2014, 157, 227-240.	28.9	40

#	Article	IF	CITATIONS
55	BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nature Structural and Molecular Biology, 2014, 21, 1047-1057.	8.2	247
56	An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nature Genetics, 2014, 46, 1140-1146.	21.4	585
57	Enhancing the understanding of asthma. Nature Immunology, 2014, 15, 701-703.	14.5	10
58	Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunological Reviews, 2014, 261, 23-49.	6.0	76
59	JAKs and STATs in Immunity, Immunodeficiency, and Cancer. New England Journal of Medicine, 2013, 368, 161-170.	27.0	738
60	Back to the future: oral targeted therapy for RA and other autoimmune diseases. Nature Reviews Rheumatology, 2013, 9, 173-182.	8.0	106
61	BACH2 represses effector programs to stabilize Treg-mediated immune homeostasis. Nature, 2013, 498, 506-510.	27.8	332
62	Janus kinase inhibitors in autoimmune diseases. Annals of the Rheumatic Diseases, 2013, 72, ii111-ii115.	0.9	350
63	Transcription factors and <scp>CD</scp> 4 T cells seeking identity: masters, minions, setters and spikers. Immunology, 2013, 139, 294-298.	4.4	25
64	Tissue Inhibitor of Metalloproteinase 1 Is Preferentially Expressed in Th1 and Th17 T-Helper Cell Subsets and Is a Direct Stat Target Gene. PLoS ONE, 2013, 8, e59367.	2.5	15
65	Distinct requirements for T-bet in gut innate lymphoid cells. Journal of Experimental Medicine, 2012, 209, 2331-2338.	8.5	160
66	JAK and STAT Signaling Molecules in Immunoregulation and Immune-Mediated Disease. Immunity, 2012, 36, 542-550.	14.3	933
67	Interleukin-27 Priming of T Cells Controls IL-17 Production In trans via Induction of the Ligand PD-L1. Immunity, 2012, 36, 1017-1030.	14.3	229
68	Helper T-cell differentiation and plasticity: insights from epigenetics. Immunology, 2011, 134, 235-245.	4.4	96
69	Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nature Immunology, 2011, 12, 247-254.	14.5	522
70	Genomic views of STAT function in CD4+ T helper cell differentiation. Nature Reviews Immunology, 2011, 11, 239-250.	22.7	251
71	Regulation of MicroRNA Expression and Abundance during Lymphopoiesis. Immunity, 2010, 32, 828-839.	14.3	307
72	Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature, 2010, 467, 967-971.	27.8	1,253

#	Article	lF	CITATIONS
73	The Gene Encoding the Hematopoietic Stem Cell Regulator CCN3/NOV Is under Direct Cytokine Control through the Transcription Factors STAT5A/B*. Journal of Biological Chemistry, 2010, 285, 32704-32709.	3.4	13
74	Mechanisms Underlying Lineage Commitment and Plasticity of Helper CD4 ⁺ T Cells. Science, 2010, 327, 1098-1102.	12.6	1,151
75	The functional plasticity of T cell subsets. Nature Reviews Immunology, 2009, 9, 811-816.	22.7	241
76	Janus kinases in immune cell signaling. Immunological Reviews, 2009, 228, 273-287.	6.0	982
77	Signal transduction and Th17 cell differentiation. Microbes and Infection, 2009, 11, 599-611.	1.9	52
78	The transcription factors STAT5A/B regulate GM-CSF–mediated granulopoiesis. Blood, 2009, 114, 4721-4728.	1.4	58
79	Th17 cells: a new fate for differentiating helper T cells. Immunologic Research, 2008, 41, 87-102.	2.9	271
80	T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance. Nature, 2008, 455, 246-250.	27.8	183
81	Cytokine Signaling Modules in Inflammatory Responses. Immunity, 2008, 28, 477-487.	14.3	641
82	New complexities in helper T cell fate determination and the implications for autoimmune diseases. Modern Rheumatology, 2008, 18, 533-541.	1.8	42
83	New complexities in helper T cell fate determination and the implications for autoimmune diseases. Modern Rheumatology, 2008, 18, 533-541.	1.8	34
84	Stat5a/b are essential for normal lymphoid development and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1000-1005.	7.1	331
85	New strategies for immunosuppression: interfering with cytokines by targeting the Jak/Stat pathway. Current Opinion in Rheumatology, 2005, 17, 305-311.	4.3	56
86	A new modality for immunosuppression: targeting the JAK/STAT pathway. Nature Reviews Drug Discovery, 2004, 3, 555-564.	46.4	275
87	Prevention of Organ Allograft Rejection by a Specific Janus Kinase 3 Inhibitor. Science, 2003, 302, 875-878.	12.6	630
88	Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB Journal, 2002, 16, 61-71.	0.5	510
89	Cytokine Signaling in 2002. Cell, 2002, 109, S121-S131.	28.9	978
90	Cytokines and autoimmunity. Nature Reviews Immunology, 2002, 2, 37-45.	22.7	558

#	Article	IF	CITATIONS
91	Type 1 IFNs and regulation of TH1 responses: enigmas both resolved and emerge. Nature Immunology, 2000, 1, 17-19.	14.5	59
92	STAM2, a new member of the STAM family, binding to the Janus kinases. FEBS Letters, 2000, 477, 55-61.	2.8	61
93	Severe combined immune deficiencies due to defects of the common ? chain-JAK3 signaling pathway. Seminars in Immunopathology, 1998, 19, 401-415.	4.0	18
94	JAKS AND STATS: Biological Implications. Annual Review of Immunology, 1998, 16, 293-322.	21.8	1,624
95	Advances in the understanding of cytokine signal transduction: the role of Jaks and STATs in immunoregulation and the pathogenesis of immunodeficiency. Journal of Clinical Immunology, 1997, 17, 431-447.	3.8	45
96	Signal Transduction by Interleukin-12 and Interleukin-2 Annals of the New York Academy of Sciences, 1996, 795, 41-59.	3.8	11
97	Signaling by IL-2 and related cytokines: JAKs, STATs, and relationship to immunodeficiency. Journal of Leukocyte Biology, 1996, 60, 441-452.	3.3	97
98	Thrombopoietin (TPO) induces tyrosine phosphorylation and activation of STAT5 and STAT3. FEBS Letters, 1995, 370, 63-68.	2.8	70
99	Phosphorylation of the T cell antigen receptor: Multiple signal transduction pathways. Journal of Cellular Physiology, 1987, 133, 49-51.	4.1	3
100	Molecular Basis of Severe Combined Immunodeficiency: Lessons from Cytokine Signaling Pathways. , 0, , 279-305.		0