List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5484093/publications.pdf Version: 2024-02-01

MINIUN CHEN

#	Article	IF	CITATIONS
1	The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature Biotechnology, 2010, 28, 827-838.	17.5	795
2	FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discovery Today, 2011, 16, 697-703.	6.4	337
3	Drug-induced liver injury: Interactions between drug properties and host factors. Journal of Hepatology, 2015, 63, 503-514.	3.7	319
4	High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology, 2013, 58, 388-396.	7.3	288
5	DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discovery Today, 2016, 21, 648-653.	6.4	248
6	A Decade of Toxicogenomic Research and Its Contribution to Toxicological Science. Toxicological Sciences, 2012, 130, 217-228.	3.1	153
7	Application of ethyl chloroformate derivatization for gas chromatography–mass spectrometry based metabonomic profiling. Analytica Chimica Acta, 2007, 583, 277-283.	5.4	151
8	Toward predictive models for drug-induced liver injury in humans: are we there yet?. Biomarkers in Medicine, 2014, 8, 201-213.	1.4	124
9	Predicting Hepatotoxicity Using ToxCast <i>in Vitro</i> Bioactivity and Chemical Structure. Chemical Research in Toxicology, 2015, 28, 738-751.	3.3	124
10	Metabonomic Study of Aristolochic Acid-Induced Nephrotoxicity in Rats. Journal of Proteome Research, 2006, 5, 995-1002.	3.7	113
11	Metabolic profiling using combined GC-MS and LC-MS provides a systems understanding of aristolochic acid-induced nephrotoxicity in rat. FEBS Letters, 2007, 581, 707-711.	2.8	104
12	Quantitative Structure-Activity Relationship Models for Predicting Drug-Induced Liver Injury Based on FDA-Approved Drug Labeling Annotation and Using a Large Collection of Drugs. Toxicological Sciences, 2013, 136, 242-249.	3.1	96
13	High Daily Dose and Being a Substrate of Cytochrome P450 Enzymes Are Two Important Predictors of Drug-Induced Liver Injury. Drug Metabolism and Disposition, 2014, 42, 744-750.	3.3	91
14	Metabonomic Study on the Biochemical Profiles of A Hydrocortisone-Induced Animal Model. Journal of Proteome Research, 2005, 4, 2391-2396.	3.7	85
15	Development of Decision Forest Models for Prediction of Drug-Induced Liver Injury in Humans Using A Large Set of FDA-approved Drugs. Scientific Reports, 2017, 7, 17311.	3.3	84
16	The Liver Toxicity Knowledge Base: A Systems Approach to a Complex End Point. Clinical Pharmacology and Therapeutics, 2013, 93, 409-412.	4.7	76
17	A Model to predict severity of drugâ€induced liver injury in humans. Hepatology, 2016, 64, 931-940	7.3	74
18	Is Toxicogenomics a More Reliable and Sensitive Biomarker than Conventional Indicators from Rats To Predict Drug-Induced Liver Injury in Humans?. Chemical Research in Toxicology, 2012, 25, 122-129.	3.3	57

#	Article	IF	CITATIONS
19	An Approach to Comparative Analysis of Chromatographic Fingerprints for Assuring the Quality of Botanical Drugs. Journal of Chemical Information and Computer Sciences, 2003, 43, 1068-1076.	2.8	54
20	Genomic indicators in the blood predict drug-induced liver injury. Pharmacogenomics Journal, 2010, 10, 267-277.	2.0	54
21	A testing strategy to predict risk for drug-induced liver injury in humans using high-content screen assays and the â€rule-of-two' model. Archives of Toxicology, 2014, 88, 1439-1449.	4.2	54
22	The Liver Toxicity Knowledge Base (LKTB) and drug-induced liver injury (DILI) classification for assessment of human liver injury. Expert Review of Gastroenterology and Hepatology, 2018, 12, 31-38.	3.0	54
23	Consistency of predictive signature genes and classifiers generated using different microarray platforms. Pharmacogenomics Journal, 2010, 10, 247-257.	2.0	53
24	Associations of Drug Lipophilicity and Extent of Metabolism with Drug-Induced Liver Injury. International Journal of Molecular Sciences, 2017, 18, 1335.	4.1	53
25	Mass Spectrometry-Based Metabolic Profiling of Rat Urine Associated with General Toxicity Induced by the Multiglycoside of <i>Tripterygium wilfordii</i> Hook. f Chemical Research in Toxicology, 2008, 21, 288-294.	3.3	49
26	Differential gene expression profiling of mouse skin after sulfur mustard exposure: Extended time response and inhibitor effect. Toxicology and Applied Pharmacology, 2009, 234, 156-165.	2.8	45
27	Structural shifts of gut microbiota as surrogate endpoints for monitoring host health changes induced by carcinogen exposure. FEMS Microbiology Ecology, 2010, 73, no-no.	2.7	44
28	Key Challenges and Opportunities Associated with the Use of In Vitro Models to Detect Human DILI: Integrated Risk Assessment and Mitigation Plans. BioMed Research International, 2016, 2016, 1-20.	1.9	44
29	Review article: therapeutic bile acids and the risks for hepatotoxicity. Alimentary Pharmacology and Therapeutics, 2018, 47, 1623-1638.	3.7	43
30	Functional analysis of multiple genomic signatures demonstrates that classification algorithms choose phenotype-related genes. Pharmacogenomics Journal, 2010, 10, 310-323.	2.0	41
31	Evaluations of the trans-sulfuration pathway in multiple liver toxicity studies. Toxicology and Applied Pharmacology, 2009, 235, 25-32.	2.8	39
32	atBioNet– an integrated network analysis tool for genomics and biomarker discovery. BMC Genomics, 2012, 13, 325.	2.8	33
33	Interplay of gender, age and drug properties on reporting frequency of drug-induced liver injury. Regulatory Toxicology and Pharmacology, 2018, 94, 101-107.	2.7	29
34	Predicting idiosyncratic drug-induced liver injury – some recent advances. Expert Review of Gastroenterology and Hepatology, 2014, 8, 721-723.	3.0	26
35	Metabolic profiling reveals therapeutic effects of Herba Cistanches in an animal model of hydrocortisone-induced 'kidney-deficiency syndrome'. Chinese Medicine, 2008, 3, 3.	4.0	25
36	LC/ESI-MS method for the determination of trimetazidine in human plasma: Application to a bioequivalence study on Chinese volunteers. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 1804-1807.	2.8	24

#	Article	IF	CITATIONS
37	A Unifying Ontology to Integrate Histological and Clinical Observations for Drug-Induced Liver Injury. American Journal of Pathology, 2013, 182, 1180-1187.	3.8	23
38	Integrating Drug's Mode of Action into Quantitative Structure–Activity Relationships for Improved Prediction of Drug-Induced Liver Injury. Journal of Chemical Information and Modeling, 2017, 57, 1000-1006.	5.4	23
39	Elevated bilirubin, alkaline phosphatase at onset, and drug metabolism are associated with prolonged recovery from DILI. Journal of Hepatology, 2021, 75, 333-341.	3.7	23
40	The Development of a Database for Herbal and Dietary Supplement Induced Liver Toxicity. International Journal of Molecular Sciences, 2018, 19, 2955.	4.1	21
41	A systems approach for analysis of high content screening assay data with topic modeling. BMC Bioinformatics, 2013, 14, S11.	2.6	19
42	QSAR Models at the US FDA/NCTR. Methods in Molecular Biology, 2016, 1425, 431-459.	0.9	19
43	Direct-Acting Antivirals for Chronic Hepatitis C: Can Drug Properties Signal Potential for LiverÂlnjury?. Gastroenterology, 2017, 152, 1270-1274.	1.3	18
44	Quantitative Structure–Activity Relationship Models for Predicting Risk of Drug-Induced Liver Injury in Humans. Methods in Pharmacology and Toxicology, 2018, , 77-100.	0.2	16
45	A Review of Feature Reduction Methods for QSAR-Based Toxicity Prediction. Challenges and Advances in Computational Chemistry and Physics, 2019, , 119-139.	0.6	14
46	Selecting a single model or combining multiple models for microarray-based classifier development? – A comparative analysis based on large and diverse datasets generated from the MAQC-II project. BMC Bioinformatics, 2011, 12, S3.	2.6	13
47	The landscape of hepatobiliary adverse reactions across 53 herbal and dietary supplements reveals immune-mediated injury as a common cause of hepatitis. Archives of Toxicology, 2020, 94, 273-293.	4.2	13
48	ArrayTrack: An FDA and Public Genomic Tool. Methods in Molecular Biology, 2017, 1613, 333-353.	0.9	12
49	Integrating adverse outcome pathways (AOPs) and high throughput in vitro assays for better risk evaluations, a study with drug-induced liver injury (DILI). ALTEX: Alternatives To Animal Experimentation, 2020, 37, 187-196.	1.5	12
50	Mining hidden knowledge for drug safety assessment: topic modeling of LiverTox as a case study. BMC Bioinformatics, 2014, 15, S6.	2.6	10
51	The influence of drug properties and host factors on delayed onset of symptoms in drugâ€induced liver injury. Liver International, 2018, 39, 401-410.	3.9	10
52	NETBAGs: a network-based clustering approach with gene signatures for cancer subtyping analysis. Biomarkers in Medicine, 2015, 9, 1053-1065.	1.4	9
53	Pediatric Intestinal Failure–Associated Liver Disease: Challenges in Identifying Clinically Relevant Biomarkers. Journal of Parenteral and Enteral Nutrition, 2018, 42, 455-462.	2.6	9
54	Drug-Induced Liver Injury. BioMed Research International, 2017, 2017, 1-2.	1.9	7

#	Article	IF	CITATIONS
55	ebTrack: an environmental bioinformatics system built upon ArrayTrackâ"¢. BMC Proceedings, 2009, 3, S5.	1.6	6
56	Target-specific toxicity knowledgebase (TsTKb): a novel toolkit for in silico predictive toxicology. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2018, 36, 219-236.	2.9	6
57	Drug-Induced Liver Injury (DILI) Classification and Its Application on Human DILI Risk Prediction. Methods in Pharmacology and Toxicology, 2018, , 45-59.	0.2	5
58	Cancer genomics predicts disease relapse and therapeutic response to neoadjuvant chemotherapy of hormone sensitive breast cancers. Scientific Reports, 2020, 10, 8188.	3.3	5
59	A systematic comparison of hepatobiliary adverse drug reactions in FDA and EMA drug labeling reveals discrepancies. Drug Discovery Today, 2022, 27, 337-346.	6.4	5
60	Editorial: Deep Learning for Toxicity and Disease Prediction. Frontiers in Genetics, 2020, 11, 175.	2.3	4
61	Machine Learning to Identify Interaction of Single-Nucleotide Polymorphisms as a Risk Factor for Chronic Drug-Induced Liver Injury. International Journal of Environmental Research and Public Health, 2021, 18, 10603.	2.6	4
62	Drug properties and host factors contribute to biochemical presentation of drug-induced liver injury: a prediction model from a machineÂlearning approach. Archives of Toxicology, 2021, 95, 1793-1803.	4.2	3
63	Mode-of-Action-Guided, Molecular Modeling-Based Toxicity Prediction: A Novel Approach for In Silico Predictive Toxicology. Challenges and Advances in Computational Chemistry and Physics, 2019, , 99-118.	0.6	2
64	New perspectives on the Chinese herbal nephropathy. Phytotherapy Research, 2005, 19, 1001-1002.	5.8	1
65	Genomic Biomarkers for Personalized Medicine in Breast Cancer. International Journal of Clinical Pharmacology & Toxicology, 0, , 35-37.	1.0	1
66	578 Interplay of Gender, Age and Drug Properties in Drug-Induced Liver Injury: Analysis of Adverse Event Reporting at Who Vigibaseâ,,¢. Gastroenterology, 2015, 148, S-984.	1.3	0
67	Data Mining for Possible Drug-Host Interplay in Clinical Phenotypes of Drug-Induced Liver Injury. Gastroenterology, 2017, 152, S1080-S1081.	1.3	0
68	Influence of host characteristics and pharmacological properties on type of liver injury in hepatotoxicity. Journal of Hepatology, 2017, 66, S401-S402.	3.7	0
69	The Influence of Drug Properties and Host Factors on Delayed Onset in Hepatotoxicity. Clinical Therapeutics, 2017, 39, e61-e62.	2.5	0
70	Predicting the Risks of Drug-Induced Liver Injury in Humans Utilizing Computational Modeling. Challenges and Advances in Computational Chemistry and Physics, 2019, , 259-278.	0.6	0
71	Data mining techniques to identify potential clinical presentation modulators in drug-induced liver injury. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-9-13.	0.0	0