
Andrew D Yurochko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5483767/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of an immediate-early gene induced in adherent monocytes that encodes lκB-like activity. Cell, 1991, 65, 1281-1289.	28.9	761
2	Human Cytomegalovirus Induces Monocyte Differentiation and Migration as a Strategy for Dissemination and Persistence. Journal of Virology, 2004, 78, 4444-4453.	3.4	193
3	Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22369-22374.	7.1	177
4	Transcriptome Analysis Reveals Human Cytomegalovirus Reprograms Monocyte Differentiation toward an M1 Macrophage. Journal of Immunology, 2008, 181, 698-711.	0.8	174
5	Activation of the NF-κB Pathway in Human Cytomegalovirus-Infected Cells Is Necessary for Efficient Transactivation of the Major Immediate-Early Promoter. Journal of Virology, 2004, 78, 4498-4507.	3.4	135
6	Human Cytomegalovirus (HCMV) Infection of Endothelial Cells Promotes Naiì^ve Monocyte Extravasation and Transfer of Productive Virus To Enhance Hematogenous Dissemination of HCMV. Journal of Virology, 2006, 80, 11539-11555.	3.4	112
7	Role of Human Cytomegalovirus Immediate-Early Proteins in Cell Growth Control. Journal of Virology, 2000, 74, 8028-8037.	3.4	108
8	Human CMV infection of endothelial cells induces an angiogenic response through viral binding to EGF receptor and β ₁ and β ₃ integrins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5531-5536.	7.1	102
9	OR14I1 is a receptor for the human cytomegalovirus pentameric complex and defines viral epithelial cell tropism. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7043-7052.	7.1	97
10	PI3K-Dependent Upregulation of Mcl-1 by Human Cytomegalovirus Is Mediated by Epidermal Growth Factor Receptor and Inhibits Apoptosis in Short-Lived Monocytes. Journal of Immunology, 2010, 184, 3213-3222.	0.8	91
11	Human Cytomegalovirus Requires Epidermal Growth Factor Receptor Signaling To Enter and Initiate the Early Steps in the Establishment of Latency in CD34 ⁺ Human Progenitor Cells. Journal of Virology, 2017, 91, .	3.4	85
12	HCMV Reprogramming of Infected Monocyte Survival and Differentiation: A Goldilocks Phenomenon. Viruses, 2014, 6, 782-807.	3.3	80
13	HCMV activates PI(3)K in monocytes and promotes monocyte motility and transendothelial migration in a PI(3)K-dependent manner. Journal of Leukocyte Biology, 2004, 76, 65-76.	3.3	76
14	The role of MKK1/2 kinase activity in human cytomegalovirus infection. Journal of General Virology, 2001, 82, 493-497.	2.9	75
15	The HCMV gH/gL/UL128-131 Complex Triggers the Specific Cellular Activation Required for Efficient Viral Internalization into Target Monocytes. PLoS Pathogens, 2013, 9, e1003463.	4.7	74
16	NF-κB and phosphatidylinositol 3-kinase activity mediates the HCMV-induced atypical M1/M2 polarization of monocytes. Virus Research, 2009, 144, 329-333.	2.2	68
17	Overview of Human Cytomegalovirus Pathogenesis. Methods in Molecular Biology, 2014, 1119, 15-28.	0.9	68
18	Human Cytomegalovirus IE1-72 Activates Ataxia Telangiectasia Mutated Kinase and a p53/p21-Mediated Growth Arrest Response. Journal of Virology, 2005, 79, 11467-11475.	3.4	62

#	Article	IF	CITATIONS
19	Human cytomegalovirus induction of a unique signalsome during viral entry into monocytes mediates distinct functional changes: a strategy for viral dissemination. Journal of Leukocyte Biology, 2012, 92, 743-752.	3.3	60
20	Roles of Phosphatidylinositol 3-Kinase and NF-κB in Human Cytomegalovirus-Mediated Monocyte Diapedesis and Adhesion: Strategy for Viral Persistence. Journal of Virology, 2007, 81, 7683-7694.	3.4	57
21	Human Cytomegalovirus Stimulates Monocyte-to-Macrophage Differentiation via the Temporal Regulation of Caspase 3. Journal of Virology, 2012, 86, 10714-10723.	3.4	57
22	Monocyte-induced cytokine expression in cultured human retinal pigment epithelial cells. Experimental Eye Research, 1995, 60, 533-543.	2.6	52
23	Prolonged activation of NF-κB by human cytomegalovirus promotes efficient viral replication and late gene expression. Virology, 2006, 346, 15-31.	2.4	51
24	Integrins as Herpesvirus Receptors and Mediators of the Host Signalosome. Annual Review of Virology, 2016, 3, 215-236.	6.7	51
25	Human Cytomegalovirus-Regulated Paxillin in Monocytes Links Cellular Pathogenic Motility to the Process of Viral Entry. Journal of Virology, 2011, 85, 1360-1369.	3.4	50
26	EphA2 Expression Regulates Inflammation and Fibroproliferative Remodeling in Atherosclerosis. Circulation, 2017, 136, 566-582.	1.6	50
27	Transcriptome Analysis of NF-κB- and Phosphatidylinositol 3-Kinase-Regulated Genes in Human Cytomegalovirus-Infected Monocytes. Journal of Virology, 2008, 82, 1040-1046.	3.4	47
28	Human Cytomegalovirus Encodes a Novel FLT3 Receptor Ligand Necessary for Hematopoietic Cell Differentiation and Viral Reactivation. MBio, 2018, 9, .	4.1	43
29	Human Cytomegalovirus Modulation of Signal Transduction. Current Topics in Microbiology and Immunology, 2008, 325, 205-220.	1.1	43
30	Human Cytomegalovirus miRNAs Regulate TGF-β to Mediate Myelosuppression while Maintaining Viral Latency in CD34+ Hematopoietic Progenitor Cells. Cell Host and Microbe, 2020, 27, 104-114.e4.	11.0	41
31	Human Cytomegalovirus US28 Ligand Binding Activity Is Required for Latency in CD34 ⁺ Hematopoietic Progenitor Cells and Humanized NSG Mice. MBio, 2019, 10, .	4.1	40
32	Overview of Human Cytomegalovirus Pathogenesis. Methods in Molecular Biology, 2021, 2244, 1-18.	0.9	39
33	Human Cytomegalovirus Promotes Survival of Infected Monocytes via a Distinct Temporal Regulation of Cellular Bcl-2 Family Proteins. Journal of Virology, 2016, 90, 2356-2371.	3.4	35
34	Viral binding-induced signaling drives a unique and extended intracellular trafficking pattern during infection of primary monocytes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8819-8824.	7.1	31
35	Human Cytomegalovirus Utilizes a Nontraditional Signal Transducer and Activator of Transcription 1 Activation Cascade via Signaling through Epidermal Growth Factor Receptor and Integrins To Efficiently Promote the Motility, Differentiation, and Polarization of Infected Monocytes. Journal of Virology, 2017, 91.	3.4	31
36	The Human Cytomegalovirus Virion Possesses an Activated Casein Kinase II That Allows for the Rapid Phosphorylation of the Inhibitor of NF-κB, IκBα. Journal of Virology, 2007, 81, 5305-5314.	3.4	30

ANDREW D YUROCHKO

#	Article	IF	CITATIONS
37	HCMV Infection and Apoptosis: How Do Monocytes Survive HCMV Infection?. Viruses, 2018, 10, 533.	3.3	29
38	The Differentiation of Human Cytomegalovirus Infected-Monocytes Is Required for Viral Replication. Frontiers in Cellular and Infection Microbiology, 2020, 10, 368.	3.9	26
39	Changes in Macrophage Populations: Phenotypic Differences between Normal and Tumor-Bearing Host Macro phages. Immunobiology, 1989, 178, 416-435.	1.9	25
40	The ULb′ Region of the Human Cytomegalovirus Genome Confers an Increased Requirement for the Viral Protein Kinase UL97. Journal of Virology, 2013, 87, 6359-6376.	3.4	23
41	Cytomegalovirus Infection Leads to Microvascular Dysfunction and Exacerbates Hypercholesterolemia-Induced Responses. American Journal of Pathology, 2010, 177, 2134-2144.	3.8	22
42	Tumor-induced alteration in macrophage accessory cell activity on autoreactive T cells. Cancer Immunology, Immunotherapy, 1989, 30, 170-176.	4.2	20
43	Productive Infection of Human Endometrial Stromal Cells by Human Cytomegalovirus. Virology, 1994, 202, 247-257.	2.4	19
44	Tumor modulation of autoreactivity: Decreased macrophage and autoreactive T cell interactions. Cellular Immunology, 1990, 127, 105-119.	3.0	18
45	HCMV-induced signaling through gB–EGFR engagement is required for viral trafficking and nuclear translocation in primary human monocytes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19507-19516.	7.1	18
46	A Quantitative Evaluation of Cell Migration by the Phagokinetic Track Motility Assay. Journal of Visualized Experiments, 2012, , e4165.	0.3	13
47	Two-color flow cytometric analysis of the expression of MAC and MHC Class II antigens on macrophages during tumor growth. Cytometry, 1990, 11, 725-735.	1.8	10
48	Regulation of Macrophage Infiltration and Activation in Sites of Chronic Inflammation. Annals of the New York Academy of Sciences, 1992, 664, 93-102.	3.8	10
49	Normal and tumor-bearing host macrophage responses: variability in accessory function, surface markers, and cell-cycle kinetics. Immunology Letters, 1990, 24, 21-29.	2.5	8
50	Normal and Tumor-Bearing Host Splenic Macrophage Responses to Lipopolysaccharide. Immunological Investigations, 1990, 19, 41-55.	2.0	8
51	CD34 ⁺ Hematopoietic Progenitor Cell Subsets Exhibit Differential Ability To Maintain Human Cytomegalovirus Latency and Persistence. Journal of Virology, 2021, 95, .	3.4	8
52	Analysis of Cytomegalovirus Binding/Entry-Mediated Events. Methods in Molecular Biology, 2014, 1119, 113-121.	0.9	8
53	Tumor-Induced Variations in a High Molecular Weight Inhibitory Monokine. Immunobiology, 1989, 178, 361-379.	1.9	7
54	Tumor growth changes the contribution of granulocyte-macrophage colony-stimulating factor during macrophage-mediated suppression of allorecognition. Immunobiology, 1992, 185, 427-439.	1.9	6

#	Article	IF	CITATIONS
55	Human Cytomegalovirus Infection Suppresses CD34+ Progenitor Cell Engraftment in Humanized Mice. Microorganisms, 2020, 8, 525.	3.6	6
56	Human Cytomegalovirus Host Interactions: EGFR and Host Cell Signaling Is a Point of Convergence Between Viral Infection and Functional Changes in Infected Cells. Frontiers in Microbiology, 2021, 12, 660901.	3.5	6
57	Macrophages stimulated by receptor-ligand interactions exhibit differences in cell-cycle kinetics during tumor growth: stimulation at Mac-1 and Mac-3 receptors alters DNA synthesis. Immunology Letters, 1992, 31, 217-225.	2.5	4
58	New Mechanism by Which Human Cytomegalovirus MicroRNAs Negate the Proinflammatory Response to Infection. MBio, 2017, 8, .	4.1	4
59	Collection and Isolation of CD14+ Primary Human Monocytes Via Dual Density Gradient Centrifugation as a Model System to Study Human Cytomegalovirus Infection and Pathogenesis. Methods in Molecular Biology, 2021, 2244, 103-113.	0.9	4
60	Immunological Methods for the Detection of Human Cytomegalovirus. , 2000, 33, 1-20.		3
61	Using a Phosphoproteomic Screen to Profile Early Changes During HCMV Infection of Human Monocytes. Methods in Molecular Biology, 2021, 2244, 233-246.	0.9	2
62	Human Cytomegalovirus Manipulates Syntaxin 6 for Successful Trafficking and Subsequent Infection of Monocytes. Journal of Virology, 0, , .	3.4	1