Lejuan Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/548364/publications.pdf

Version: 2024-02-01

430874 2,158 20 18 h-index citations papers

g-index 20 20 20 3099 times ranked docs citations citing authors all docs

752698

20

#	Article	IF	CITATIONS
1	Fabrication of Nickel–Cobalt Bimetal Phosphide Nanocages for Enhanced Oxygen Evolution Catalysis. Advanced Functional Materials, 2018, 28, 1706008.	14.9	370
2	Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nature Communications, 2020, 11, 4066.	12.8	337
3	CeO ₂ -Induced Interfacial Co ²⁺ Octahedral Sites and Oxygen Vacancies for Water Oxidation. ACS Catalysis, 2019, 9, 6484-6490.	11.2	278
4	Modulation of the Reduction Potential of TiO _{2â€"<i>x</i>} by Fluorination for Efficient and Selective CH ₄ Generation from CO ₂ Photoreduction. Nano Letters, 2018, 18, 3384-3390.	9.1	166
5	Graphene-Draped Semiconductors for Enhanced Photocorrosion Resistance and Photocatalytic Properties. Journal of the American Chemical Society, 2017, 139, 4144-4151.	13.7	149
6	Enhanced Electrocatalytic Hydrogen Evolution Activity in Single-Atom Pt-Decorated VS ₂ Nanosheets. ACS Nano, 2020, 14, 5600-5608.	14.6	135
7	Remarkably Enhanced Hydrogen Generation of Organolead Halide Perovskites via Piezocatalysis and Photocatalysis. Advanced Energy Materials, 2019, 9, 1901801.	19.5	134
8	Governing Interlayer Strain in Bismuth Nanocrystals for Efficient Ammonia Electrosynthesis from Nitrate Reduction. ACS Nano, 2022, 16, 4795-4804.	14.6	76
9	Phosphorus Incorporation into Co ₉ S ₈ Nanocages for Highly Efficient Oxygen Evolution Catalysis. Small, 2019, 15, e1904507.	10.0	75
10	Active site engineering of Fe- and Ni-sites for highly efficient electrochemical overall water splitting. Journal of Materials Chemistry A, 2018, 6, 21445-21451.	10.3	68
11	Computational Design of Transition Metal Single-Atom Electrocatalysts on PtS ₂ for Efficient Nitrogen Reduction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20448-20455.	8.0	58
12	Metal Substitution Steering Electron Correlations in Pyrochlore Ruthenates for Efficient Acidic Water Oxidation. ACS Nano, 2021, 15, 8537-8548.	14.6	54
13	Monolithic Integration of Allâ€inâ€One Supercapacitor for 3D Electronics. Advanced Energy Materials, 2019, 9, 1900037.	19.5	51
14	Improved interfacial H ₂ O supply by surface hydroxyl groups for enhanced alkaline hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 24091-24097.	10.3	47
15	Phase and Facet Control of Molybdenum Carbide Nanosheet Observed by In Situ TEM. Small, 2017, 13, 1700051.	10.0	41
16	Transferred metal gate to 2D semiconductors for sub-1 V operation and near ideal subthreshold slope. Science Advances, 2021, 7, eabf8744.	10.3	37
17	Defectâ€Assisted Anchoring of Pt Single Atoms on MoS ₂ Nanosheets Produces Highâ€Performance Catalyst for Industrial Hydrogen Evolution Reaction. Small, 2022, 18, e2104824.	10.0	36
18	Robust Photoelectrochemical Oxygen Evolution with N, Fe–CoS ₂ Nanorod Arrays. ACS Applied Materials & Applied & A	8.0	21

LEJUAN CAI

#	Article	IF	CITATIONS
19	Bifunctional TiN@N-doped-graphene catalyst based high sulfur content cathode for reversible Aluminum-Sulfur batteries. Energy Storage Materials, 2022, 48, 297-305.	18.0	16
20	Improved air-stability of an organic–inorganic perovskite with anhydrously transferred graphene. Journal of Materials Chemistry C, 2018, 6, 8663-8669.	5 . 5	9