Eduardo Blumwald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5482340/publications.pdf Version: 2024-02-01

		10986	6836
169	25,413	71	155
papers	citations	h-index	g-index
170	170	170	10262
1/3	1/3	1/3	18362
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Haploidy and aneuploidy in switchgrass mediated by misexpression of <i>CENH3</i> . Plant Genome, 2023, 16, e20209.	2.8	4
2	Developing climateâ€resilient crops: improving plant tolerance to stress combination. Plant Journal, 2022, 109, 373-389.	5.7	198
3	Changes in ethylene and sugar metabolism regulate flavonoid composition in climacteric and non-climacteric plums during postharvest storage. Food Chemistry Molecular Sciences, 2022, 4, 100075.	2.1	9
4	A zinc finger protein <scp>SISZP1</scp> protects <scp>SISTOP1</scp> from <scp>SIRAE1</scp> â€mediated degradation to modulate aluminum resistance. New Phytologist, 2022, 236, 165-181.	7.3	8
5	Rational design and testing of abiotic stressâ€inducible synthetic promoters from poplar <i>cis</i> â€regulatory elements. Plant Biotechnology Journal, 2021, 19, 1354-1369.	8.3	27
6	An isopentenyl transferase transgenic wheat isoline exhibits less seminal root growth impairment and a differential metabolite profile under Cd stress. Physiologia Plantarum, 2021, 173, 223-234.	5.2	3
7	The Antifungal Activity of HMA, an Amiloride Analog and Inhibitor of Na+/H+ Exchangers. Frontiers in Microbiology, 2021, 12, 673035.	3.5	2
8	Stress-induced expression of IPT gene in transgenic wheat reduces grain yield penalty under drought. Journal of Genetic Engineering and Biotechnology, 2021, 19, 67.	3.3	12
9	Cellâ€Typeâ€Specific Proteomics Analysis of a Small Number of Plant Cells by Integrating Laser Capture Microdissection with a Nanodroplet Sample Processing Platform. Current Protocols, 2021, 1, e153.	2.9	17
10	Auxin Homeostasis and Distribution of the Auxin Efflux Carrier PIN2 Require Vacuolar NHX-Type Cation/H+ Antiporter Activity. Plants, 2020, 9, 1311.	3.5	7
11	A Cytoplasmic Receptor-like Kinase Contributes to Salinity Tolerance. Plants, 2020, 9, 1383.	3.5	7
12	Correlation-based network analysis combined with machine learning techniques highlight the role of the GABA shunt in Brachypodium sylvaticum freezing tolerance. Scientific Reports, 2020, 10, 4489.	3.3	13
13	Silencing of <i>OsCV (chloroplast vesiculation)</i> maintained photorespiration and N assimilation in rice plants grown under elevated CO ₂ . Plant, Cell and Environment, 2020, 43, 920-933.	5.7	20
14	A Genetic Algorithm to Optimize Weighted Gene Co-Expression Network Analysis. Journal of Computational Biology, 2019, 26, 1349-1366.	1.6	18
15	Primary Metabolism in Citrus Fruit as Affected by Its Unique Structure. Frontiers in Plant Science, 2019, 10, 1167.	3.6	56
16	Combined network analysis and machine learning allows the prediction of metabolic pathways from tomato metabolomics data. Communications Biology, 2019, 2, 214.	4.4	53
17	Ethylene Response of Plum ACC Synthase 1 (ACS1) Promoter is Mediated through the Binding Site of Abscisic Acid Insensitive 5 (ABI5) Å. Plants, 2019, 8, 117.	3.5	15
18	Overexpression of PbrNHX2 gene, a Na+/H+ antiporter gene isolated from Pyrus betulaefolia, confers enhanced tolerance to salt stress via modulating ROS levels. Plant Science, 2019, 285, 14-25.	3.6	16

#	Article	IF	CITATIONS
19	Imaging Salt Uptake Dynamics in Plants Using PET. Scientific Reports, 2019, 9, 18626.	3.3	17
20	Hormone balance in a climacteric plum fruit and its non-climacteric bud mutant during ripening. Plant Science, 2019, 280, 51-65.	3.6	20
21	<scp>IDD</scp> 16 negatively regulates stomatal initiation via transâ€repression of <i><scp>SPCH</scp></i> in <i>Arabidopsis</i> . Plant Biotechnology Journal, 2019, 17, 1446-1457.	8.3	22
22	Cation Specificity of Vacuolar NHX-Type Cation/H ⁺ Antiporters. Plant Physiology, 2019, 179, 616-629.	4.8	119
23	Coordinating the overall stomatal response of plants: Rapid leaf-to-leaf communication during light stress. Science Signaling, 2018, 11, .	3.6	150
24	Ethylene regulation of sugar metabolism in climacteric and non-climacteric plums. Postharvest Biology and Technology, 2018, 139, 20-30.	6.0	74
25	Salt tolerance of two perennial grass Brachypodium sylvaticum accessions. Plant Molecular Biology, 2018, 96, 305-314.	3.9	4
26	Two NHXâ€ŧype transporters from <i>Helianthus tuberosus</i> improve the tolerance of rice to salinity and nutrient deficiency stress. Plant Biotechnology Journal, 2018, 16, 310-321.	8.3	71
27	Stress-induced senescence and plant tolerance to abiotic stress. Journal of Experimental Botany, 2018, 69, 845-853.	4.8	190
28	Delaying chloroplast turnover increases water-deficit stress tolerance through the enhancement of nitrogen assimilation in rice. Journal of Experimental Botany, 2018, 69, 867-878.	4.8	39
29	Effects of Short-Term Biosolarization Using Mature Compost and Industrial Tomato Waste Amendments on the Generation and Persistence of Biocidal Soil Conditions and Subsequent Tomato Growth. Journal of Agricultural and Food Chemistry, 2018, 66, 5451-5461.	5.2	15
30	Editorial. Plant Science, 2018, 274, 1.	3.6	0
31	Unique Physiological and Transcriptional Shifts under Combinations of Salinity, Drought, and Heat. Plant Physiology, 2017, 174, 421-434.	4.8	97
32	Involvement of SchRabGDI1 from Solanum chilense in endocytic trafficking and tolerance to salt stress. Plant Science, 2017, 263, 1-11.	3.6	17
33	Reactive oxygen species, abiotic stress and stress combination. Plant Journal, 2017, 90, 856-867.	5.7	1,759
34	Generation of Octaploid Switchgrass by Seedling Treatment with Mitotic Inhibitors. Bioenergy Research, 2017, 10, 344-352.	3.9	7
35	Sugar metabolism reprogramming in a non-climacteric bud mutant of a climacteric plum fruit during development on the tree. Journal of Experimental Botany, 2017, 68, 5813-5828.	4.8	42

36 Imaging Salt Transport in Plants Using PET: A Feasibility Study. , 2017, , .

#	Article	IF	CITATIONS
37	Spike-Dip Transformation Method of Setaria viridis. Plant Genetics and Genomics: Crops and Models, 2017, , 357-369.	0.3	1
38	ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress. PLoS ONE, 2016, 11, e0147625.	2.5	267
39	Spikeâ€dip transformation of <i>Setaria viridis</i> . Plant Journal, 2016, 86, 89-101.	5.7	54
40	Different characteristics of high yield formation between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Research, 2016, 198, 179-187.	5.1	49
41	Preface. Plant Science, 2016, 251, 1.	3.6	2
42	Effects of abiotic stress on physiological plasticity and water use of Setaria viridis (L.). Plant Science, 2016, 251, 128-138.	3.6	53
43	Water deficit stress tolerance in maize conferred by expression of an isopentenyltransferase (IPT) gene driven by a stress- and maturation-induced promoter. Journal of Biotechnology, 2016, 220, 66-77.	3.8	46
44	Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Willd Planta, 2016, 243, 591-603.	3.2	49
45	Targeting Hormone-Related Pathways to Improve Grain Yield in Rice: A Chemical Approach. PLoS ONE, 2015, 10, e0131213.	2.5	26
46	Molecular characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family from Citrus and the effect of fruit load on their expression. Frontiers in Plant Science, 2015, 6, 389.	3.6	54
47	RNA-Seq Analysis of Spatiotemporal Gene Expression Patterns During Fruit Development Revealed Reference Genes for Transcript Normalization in Plums. Plant Molecular Biology Reporter, 2015, 33, 1634-1649.	1.8	48
48	The Roles of ROS and ABA in Systemic Acquired Acclimation. Plant Cell, 2015, 27, 64-70.	6.6	450
49	The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. Plant Molecular Biology, 2015, 88, 401-413.	3.9	92
50	pH Regulation by NHX-Type Antiporters Is Required for Receptor-Mediated Protein Trafficking to the Vacuole in Arabidopsis. Plant Cell, 2015, 27, 1200-1217.	6.6	126
51	Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. Journal of Experimental Botany, 2015, 66, 889-906.	4.8	92
52	Non-climacteric ripening and sorbitol homeostasis in plum fruits. Plant Science, 2015, 231, 30-39.	3.6	46
53	Co-overexpression of AVP1 and AtNHX1 in Cotton Further Improves Drought and Salt Tolerance in Transgenic Cotton Plants. Plant Molecular Biology Reporter, 2015, 33, 167-177.	1.8	69

54 Selection and Validation of Reference Genes for Gene Expression Analysis in Switchgrass (Panicum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

4

#	Article	IF	CITATIONS
55	Vacuolar Na+/H+ NHX-Type Antiporters Are Required for Cellular K+ Homeostasis, Microtubule Organization and Directional Root Growth. Plants, 2014, 3, 409-426.	3.5	34
56	Intracellular NHX-Type Cation/H+ Antiporters in Plants. Molecular Plant, 2014, 7, 261-263.	8.3	76
57	Stress-Induced Chloroplast Degradation in <i>Arabidopsis</i> Is Regulated via a Process Independent of Autophagy and Senescence-Associated Vacuoles. Plant Cell, 2014, 26, 4875-4888.	6.6	161
58	Abiotic and biotic stress combinations. New Phytologist, 2014, 203, 32-43.	7.3	1,460
59	Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds. Journal of Experimental Botany, 2014, 65, 3029-3044.	4.8	61
60	Copper homeostasis in grapevine: functional characterization of the Vitis vinifera copper transporter 1. Planta, 2014, 240, 91-101.	3.2	35
61	Metabolic changes of Vitis vinifera berries and leaves exposed to Bordeaux mixture. Plant Physiology and Biochemistry, 2014, 82, 270-278.	5.8	40
62	The ins and outs of intracellular ion homeostasis: NHX-type cation/H + transporters. Current Opinion in Plant Biology, 2014, 22, 1-6.	7.1	229
63	PSARK::IPT expression causes protection of photosynthesis in tobacco plants during N deficiency. Environmental and Experimental Botany, 2014, 98, 40-46.	4.2	8
64	Assessing Reference Genes for Accurate Transcript Normalization Using Quantitative Real-Time PCR in Pearl Millet [Pennisetum glaucum (L.) R. Br.]. PLoS ONE, 2014, 9, e106308.	2.5	38
65	Improved Growth, Drought Tolerance, and Ultrastructural Evidence of Increased Turgidity in Tobacco Plants Overexpressing Arabidopsis Vacuolar Pyrophosphatase (AVP1). Molecular Biotechnology, 2013, 54, 379-392.	2.4	23
66	Sonication-assisted efficient Agrobacterium-mediated genetic transformation of the multipurpose woody desert shrub Leptadenia pyrotechnica. Plant Cell, Tissue and Organ Culture, 2013, 112, 289-301.	2.3	26
67	Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of flowering-control genes in Citrus buds. Plant Science, 2013, 198, 46-57.	3.6	91
68	In Vivo Intracellular pH Measurements in Tobacco and <i>Arabidopsis</i> Reveal an Unexpected pH Gradient in the Endomembrane System. Plant Cell, 2013, 25, 4028-4043.	6.6	161
69	Stress-Induced Cytokinin Synthesis Increases Drought Tolerance through the Coordinated Regulation of Carbon and Nitrogen Assimilation in Rice. Plant Physiology, 2013, 163, 1609-1622.	4.8	213
70	Water-Deficit Inducible Expression of a Cytokinin Biosynthetic Gene IPT Improves Drought Tolerance in Cotton. PLoS ONE, 2013, 8, e64190.	2.5	104
71	Fluorescent Dye Based Measurement of Vacuolar pH and K+. Bio-protocol, 2013, 3, .	0.4	4
72	Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. Journal of Experimental Botany, 2012, 63, 5727-5740.	4.8	236

#	Article	IF	CITATIONS
73	Copper Transport and Compartmentation in Grape Cells. Plant and Cell Physiology, 2012, 53, 1866-1880.	3.1	45
74	The regulation of the SARK promoter activity by hormones and environmental signals. Plant Science, 2012, 193-194, 39-47.	3.6	19
75	Ammonium formation and assimilation in PSARKâ^·IPT tobacco transgenic plants under low N. Journal of Plant Physiology, 2012, 169, 157-162.	3.5	21
76	Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 186-194.	1.9	122
77	Integrating genomics and genetics to accelerate development of drought and salinity tolerant crops. , 2012, , 271-286.		5
78	Response of carbon and nitrogen-rich metabolites to nitrogen deficiency in PSARKâ^IPT tobacco plants. Plant Physiology and Biochemistry, 2012, 57, 231-237.	5.8	29
79	The <i>Arabidopsis</i> Na+/H+ Antiporters NHX1 and NHX2 Control Vacuolar pH and K+ Homeostasis to Regulate Growth, Flower Development, and Reproduction Â. Plant Cell, 2011, 23, 3482-3497.	6.6	417
80	Mécanismes et stratégies cellulaires de tolérance à la salinité (NaCl) chez les plantes. Environmental Reviews, 2011, 19, 121-140.	4.5	14
81	Engineering Salinity and Water-Stress Tolerance in Crop Plants. Advances in Botanical Research, 2011, 57, 405-443.	1.1	70
82	Cytokinin-Dependent Improvement in Transgenic P _{SARK} ::IPT Tobacco under Nitrogen Deficiency. Journal of Agricultural and Food Chemistry, 2011, 59, 10491-10495.	5.2	24
83	Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. Journal of Experimental Botany, 2011, 62, 5367-5384.	4.8	98
84	Expression of an Arabidopsis vacuolar H ⁺ â€pyrophosphatase gene (<i>AVP1</i>) in cotton improves drought†and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnology Journal, 2011, 9, 88-99.	8.3	253
85	Cytokininâ€mediated source/sink modifications improve drought tolerance and increase grain yield in rice under waterâ€stress. Plant Biotechnology Journal, 2011, 9, 747-758.	8.3	333
86	Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 2011, 14, 290-295.	7.1	1,112
87	Regulated Expression of an Isopentenyltransferase Gene (IPT) in Peanut Significantly Improves Drought Tolerance and Increases Yield Under Field Conditions. Plant and Cell Physiology, 2011, 52, 1904-1914.	3.1	174
88	Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis. Planta, 2011, 234, 501-513.	3.2	55
89	Isolation of a citrus promoter specific for reproductive organs and its functional analysis in isolated juice sacs and tomato. Plant Cell Reports, 2011, 30, 1627-1640.	5.6	13
90	The <i>Arabidopsis</i> Intracellular Na+/H+ Antiporters NHX5 and NHX6 Are Endosome Associated and Necessary for Plant Growth and Development. Plant Cell, 2011, 23, 224-239.	6.6	286

#	Article	IF	CITATIONS
91	The sugar beet gene encoding the sodium/proton exchanger 1 (BvNHX1) is regulated by a MYB transcription factor. Planta, 2010, 232, 187-195.	3.2	41
92	Characterizing the Saltol Quantitative Trait Locus for Salinity Tolerance in Rice. Rice, 2010, 3, 148-160.	4.0	413
93	Enhanced Cytokinin Synthesis in Tobacco Plants Expressing PSARK::IPT Prevents the Degradation of Photosynthetic Protein Complexes During Drought. Plant and Cell Physiology, 2010, 51, 1929-1941.	3.1	155
94	A Novel Plant Vacuolar Na+/H+ Antiporter Gene Evolved by DNA Shuffling Confers Improved Salt Tolerance in Yeast. Journal of Biological Chemistry, 2010, 285, 22999-23006.	3.4	20
95	A label-free differential quantitative mass spectrometry method for the characterization and identification of protein changes during citrus fruit development. Proteome Science, 2010, 8, 68.	1.7	44
96	Genetic Engineering for Modern Agriculture: Challenges and Perspectives. Annual Review of Plant Biology, 2010, 61, 443-462.	18.7	902
97	Cytokinin-Dependent Photorespiration and the Protection of Photosynthesis during Water Deficit Â. Plant Physiology, 2009, 150, 1530-1540.	4.8	228
98	ModÃʿle topologique de la structure d'un antiport vacuolaire de type NHX chez la vigne cultivée (<i>Vitis vinifera</i>). Botany, 2009, 87, 339-347.	1.0	1
99	Tolerance of switchgrass to extreme soil moisture stress: Ecological implications. Plant Science, 2009, 177, 724-732.	3.6	147
100	RÃ1es biologiques des antiports vacuolaires NHX : acquis et perspectives d'amélioration génétique des plantes. Botany, 2009, 87, 1023-1035.	1.0	10
101	Molecular biology and transport properties of grapevine Na+/H+ antiporter. , 2008, , 305-315.		2
102	Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19631-19636.	7.1	768
103	Identification and Characterization of Vnx1p, a Novel Type of Vacuolar Monovalent Cation/H+ Antiporter of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2007, 282, 24284-24293.	3.4	74
104	A Grape Berry (Vitis vinifera L.) Cation/Proton Antiporter is Associated with Berry Ripening. Plant and Cell Physiology, 2007, 48, 804-811.	3.1	59
105	Plant neurobiology: no brain, no gain?. Trends in Plant Science, 2007, 12, 135-136.	8.8	146
106	Na+ transport in plants. FEBS Letters, 2007, 581, 2247-2254.	2.8	435
107	Iron-shortage-induced increase in citric acid content and reduction of cytosolic aconitase activity in Citrus fruit vesicles and calli. Physiologia Plantarum, 2007, 131, 72-79.	5.2	37
108	Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases ofCryptococcus neoformans. FEMS Yeast Research, 2007, 7, 499-510.	2.3	75

#	Article	IF	CITATIONS
109	Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana. BMC Plant Biology, 2007, 7, 18.	3.6	83
110	The citrus fruit proteome: insights into citrus fruit metabolism. Planta, 2007, 226, 989-1005.	3.2	93
111	Generalization of DNA microarray dispersion properties: microarray equivalent of t-distribution. Biology Direct, 2006, 1, 27.	4.6	15
112	Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiologia Plantarum, 2006, 127, 1-9.	5.2	132
113	Vacuolar citrate/H+ symporter of citrus juice cells. Planta, 2006, 224, 472-480.	3.2	65
114	Salt stress response in rice: genetics, molecular biology, and comparative genomics. Functional and Integrative Genomics, 2006, 6, 263-284.	3.5	169
115	Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16107-16112.	7.1	222
116	Developing salt-tolerant crop plants: challenges and opportunities. Trends in Plant Science, 2005, 10, 615-620.	8.8	760
117	Expression of an Arabidopsis Vacuolar Sodium/Proton Antiporter Gene in Cotton Improves Photosynthetic Performance Under Salt Conditions and Increases Fiber Yield in the Field. Plant and Cell Physiology, 2005, 46, 1848-1854.	3.1	233
118	DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter: impact of AtNHX1 on gene expression. Plant Journal, 2004, 40, 752-771.	5.7	114
119	Characterization of a family of vacuolar Na+/H+antiporters in Arabidopsis thaliana. Plant and Soil, 2003, 253, 245-256.	3.7	109
120	Vacuolar cation/H+exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant ofAtNHX1, theArabidopsisvacuolar Na+/H+antiporter. Plant Journal, 2003, 36, 229-239.	5.7	331
121	Engineering Salt Tolerance in Plants. Biotechnology and Genetic Engineering Reviews, 2003, 20, 261-276.	6.2	23
122	Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12510-12515.	7.1	161
123	Domains as functional building blocks of plant proteins. Trends in Plant Science, 2002, 7, 544-549.	8.8	13
124	Salinity-induced glutathione synthesis in Brassica napus. Planta, 2002, 214, 965-969.	3.2	186
125	Identification and characterization of a NaCl-inducible vacuolar Na+ /H+ antiporter in Beta vulgaris. Physiologia Plantarum, 2002, 116, 206-212.	5.2	114
126	Regulation of ADL6 activity by its associated molecular network. Plant Journal, 2002, 31, 565-576.	5.7	48

#	Article	IF	CITATIONS
127	Engineering salt tolerance in plants. Current Opinion in Biotechnology, 2002, 13, 146-150.	6.6	361
128	Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 2001, 19, 765-768.	17.5	978
129	Role of SH3 Domain–Containing Proteins in Clathrin-Mediated Vesicle Trafficking in Arabidopsis. Plant Cell, 2001, 13, 2499-2512.	6.6	86
130	Alternative splicing of a novel diacylglycerol kinase in tomato leads to a calmodulin-binding isoform. Plant Journal, 2000, 24, 317-326.	5.7	57
131	Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 2000, 12, 431-434.	5.4	812
132	The effects of paclobutrazol, abscisic acid, and gibberellin on germination and early growth in silver, red, and hybrid maple. Canadian Journal of Forest Research, 2000, 30, 557-565.	1.7	8
133	Sodium transport in plant cells. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1465, 140-151.	2.6	782
134	Upregulation of vacuolar H+ -translocating pyrophosphatase by phosphate starvation of Brassica napus (rapeseed) suspension cell cultures. FEBS Letters, 2000, 486, 155-158.	2.8	38
135	Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ Antiport in Arabidopsis. Science, 1999, 285, 1256-1258.	12.6	1,763
136	Salt Tolerance and Crop Potential of Halophytes. Critical Reviews in Plant Sciences, 1999, 18, 227-255.	5.7	557
137	Salt Tolerance and Crop Potential of Halophytes. Critical Reviews in Plant Sciences, 1999, 18, 227-255.	5.7	371
138	Changes in oxidation-reduction state and antioxidant enzymes in the roots of jack pine seedlings during cold acclimation. Physiologia Plantarum, 1998, 104, 134-142.	5.2	43
139	Early signal transduction pathways in plant–pathogen interactions. Trends in Plant Science, 1998, 3, 342-346.	8.8	183
140	Activation of a plant plasma membrane Ca2+channel by TGα1, a heterotrimeric G protein α-subunit homologue. FEBS Letters, 1998, 424, 17-21.	2.8	78
141	The gene-for-gene concept and beyond: Interactions and signals. Canadian Journal of Plant Pathology, 1998, 20, 150-157.	1.4	27
142	Identification of G proteins mediating fungal elicitor-induced dephosphorylation of host plasma membrane H+-ATPase. Journal of Experimental Botany, 1997, 48, 229-237.	4.8	34
143	Race-Specific Elicitors of Cladosporium fulvum Promote Translocation of Cytosolic Components of NADPH Oxidase to the Plasma Membrane of Tomato Cells. Plant Cell, 1997, 9, 249.	6.6	32
144	Na+/H+ antiport activity in tonoplast vesicles isolated from sunflower roots induced by NaCl stress. Physiologia Plantarum, 1997, 99, 328-334.	5.2	99

#	Article	IF	CITATIONS
145	Na+/H+ antiport activity in tonoplast vesicles isolated from sunflower roots induced by NaCl stress. Physiologia Plantarum, 1997, 99, 328-334.	5.2	3
146	The induction of freezing tolerance in jack pine seedlings: The role of root plasma membrane H+ - ATPase and redox activities. Physiologia Plantarum, 1995, 93, 55-60.	5.2	25
147	Diurnal variation in heat tolerance and heat shock protein expression in black spruce (<i>Piceamariana</i>). Canadian Journal of Forest Research, 1995, 25, 369-375.	1.7	15
148	Frost hardiness gradients in shoots and roots of <i>picea mariana</i> seedlings. Scandinavian Journal of Forest Research, 1995, 10, 32-36.	1.4	46
149	The relative contribution of elastic and osmotic adjustments to turgor maintenance of woody species Physiologia Plantarum, 1994, 90, 408-413.	5.2	68
150	Effect of Specific Elicitors of Cladosporium fulvum on Tomato Suspension Cells. Plant Physiology, 1992, 99, 1208-1215.	4.8	172
151	Characterization of Vacuolar Malate and K+ Channels under Physiological Conditions. Plant Physiology, 1992, 100, 1137-1141.	4.8	38
152	Cytoplasmic chloride regulates cation channels in the vacuolar membrane of plant cells. Journal of Membrane Biology, 1992, 125, 219-29.	2.1	39
153	Photolabeling of Tonoplast from Sugar Beet Cell Suspensions by [³ H]5-(<i>N</i> -Methyl- <i>N</i> -Isobutyl)-Amiloride, an Inhibitor of the Vacuolar Na ⁺ /H ⁺ Antiport. Plant Physiology, 1990, 93, 924-930.	4.8	25
154	Tonoplast Ion Channels from Sugar Beet Cell Suspensions. Plant Physiology, 1990, 94, 1788-1794.	4.8	17
155	Preparation of Plasma Membrane Vesicles from Black Spruce and Jack Pine Roots. Journal of Plant Physiology, 1989, 135, 467-471.	3.5	4
156	Ion channels in vacuoles from halophytes and glycophytes. FEBS Letters, 1989, 255, 92-96.	2.8	40
157	Inhibition of Na ⁺ /H ⁺ Antiport Activity in Sugar Beet Tonoplast by Analogs of Amiloride. Plant Physiology, 1987, 85, 30-33.	4.8	64
158	Salt Tolerance in Suspension Cultures of Sugar Beet. Plant Physiology, 1987, 83, 884-887.	4.8	174
159	[12] Preparation of tonoplast vesicles: Applications to H+-coupled secondary transport in plant vacuoles. Methods in Enzymology, 1987, 148, 115-123.	1.0	20
160	Tonoplast vesicles as a tool in the study of ion transport at the plant vacuole. Physiologia Plantarum, 1987, 69, 731-734.	5.2	107
161	Kinetics of Ca2+/H+ Antiport in Isolated Tonoplast Vesicles from Storage Tissue of Beta vulgaris L Plant Physiology, 1986, 80, 727-731.	4.8	117
162	Mechanism of Stimulation and Inhibition of Tonoplast H ⁺ -ATPase of <i>Beta vulgaris</i> by Chloride and Nitrate. Plant Physiology, 1986, 81, 120-125.	4.8	48

#	Article	IF	CITATIONS
163	Na ⁺ /H ⁺ Antiport in Isolated Tonoplast Vesicles from Storage Tissue of <i>Beta vulgaris</i> . Plant Physiology, 1985, 78, 163-167.	4.8	339
164	Presence of Host-Plasma Membrane Type H+-ATPase in the Membrane Envelope Enclosing the Bacteroids in Soybean Root Nodules. Plant Physiology, 1985, 78, 665-672.	4.8	81
165	Salt Adaptation of the Cyanobacterium Synechococcus 6311 Growing in a Continuous Culture (Turbidostat). Plant Physiology, 1984, 74, 183-185.	4.8	38
166	Na+H+ exchange in the cyanobacterium Synechococcus 6311. Biochemical and Biophysical Research Communications, 1984, 122, 452-459.	2.1	86
167	Ionic Osmoregulation during Salt Adaptation of the Cyanobacterium <i>Synechococcus</i> 6311. Plant Physiology, 1983, 73, 377-380.	4.8	89
168	Structural aspects of the adaptation of Nostoc muscorum to salt. Archives of Microbiology, 1982, 132, 163-167.	2.2	43
169	Osmoregulation and cell composition in salt-adaptation of Nostoc muscorum. Archives of Microbiology, 1982, 132, 168-172.	2.2	113