Shouguang Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5481396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modular Synthetic Routes to Fluorine-Containing Halogenated Phenazine and Acridine Agents That Induce Rapid Iron Starvation in Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilms. ACS Infectious Diseases, 2022, 8, 280-295.	3.8	13
2	Transcript Profiling of Nitroxoline-Treated Biofilms Shows Rapid Up-regulation of Iron Acquisition Gene Clusters. ACS Infectious Diseases, 2022, 8, 1594-1605.	3.8	3
3	A Modular Synthetic Route Involving <i>N</i> -Aryl-2-nitrosoaniline Intermediates Leads to a New Series of 3-Substituted Halogenated Phenazine Antibacterial Agents. Journal of Medicinal Chemistry, 2021, 64, 7275-7295.	6.4	21
4	Design, synthesis and biological evaluation of a halogenated phenazine-erythromycin conjugate prodrug for antibacterial applications. Organic and Biomolecular Chemistry, 2021, 19, 1483-1487.	2.8	15
5	An ether-linked halogenated phenazine-quinone prodrug model for antibacterial applications. Organic and Biomolecular Chemistry, 2021, 19, 6603-6608.	2.8	6
6	TpiA is a Key Metabolic Enzyme That Affects Virulence and Resistance to Aminoglycoside Antibiotics through CrcZ in Pseudomonas aeruginosa. MBio, 2020, 11, .	4.1	21
7	Highâ€efficiency protein delivery into transfectionâ€recalcitrant cell types. Biotechnology and Bioengineering, 2020, 117, 816-831.	3.3	4
8	PvrA is a novel regulator that contributes to Pseudomonas aeruginosa pathogenesis by controlling bacterial utilization of long chain fatty acids. Nucleic Acids Research, 2020, 48, 5967-5985.	14.5	20
9	Molecular genetic analysis of an XDR Pseudomonas aeruginosa ST664 clone carrying multiple conjugal plasmids. Journal of Antimicrobial Chemotherapy, 2020, 75, 1443-1452.	3.0	17
10	Combination of Azithromycin and Gentamicin for Efficient Treatment of Pseudomonas aeruginosa Infections. Journal of Infectious Diseases, 2019, 220, 1667-1678.	4.0	16
11	Pseudomonas aeruginosa Polynucleotide Phosphorylase Contributes to Ciprofloxacin Resistance by Regulating PrtR. Frontiers in Microbiology, 2019, 10, 1762.	3.5	12
12	The Pseudomonas aeruginosa HSP70-like protein DnaK induces IL-1β expression via TLR4-dependent activation of the NF-κB and JNK signaling pathways. Comparative Immunology, Microbiology and Infectious Diseases, 2019, 67, 101373.	1.6	17
13	Pseudomonas aeruginosa ExsA Regulates a Metalloprotease, ImpA, That Inhibits Phagocytosis of Macrophages. Infection and Immunity, 2019, 87, .	2.2	15
14	Identification of a small RNA that directly controls the translation of the quorum sensing signal synthase gene <i>rhll</i> in <i>Pseudomonas aeruginosa</i> . Environmental Microbiology, 2019, 21, 2933-2947.	3.8	23
15	Oligoribonuclease Contributes to Tolerance to Aminoglycoside and β-Lactam Antibiotics by Regulating KatA in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	9
16	NrtR Regulates the Type III Secretion System Through cAMP/Vfr Pathway in Pseudomonas aeruginosa. Frontiers in Microbiology, 2019, 10, 85.	3.5	10
17	An Efficient Buchwald–Hartwig/Reductive Cyclization for the Scaffold Diversification of Halogenated Phenazines: Potent Antibacterial Targeting, Biofilm Eradication, and Prodrug Exploration. Journal of Medicinal Chemistry, 2018, 61, 3962-3983.	6.4	47
18	Bacterial type III secretion system as a protein delivery tool for a broad range of biomedical applications. Biotechnology Advances, 2018, 36, 482-493.	11.7	40

SHOUGUANG JIN

#	Article	IF	CITATIONS
19	A Rapid Phenotypic Whole-Cell Screening Approach for the Identification of Small-Molecule Inhibitors That Counter β-Lactamase Resistance in Pseudomonas aeruginosa. SLAS Discovery, 2018, 23, 55-64.	2.7	10
20	Transcript Profiling of MRSA Biofilms Treated with a Halogenated Phenazine Eradicating Agent: A Platform for Defining Cellular Targets and Pathways Critical to Biofilm Survival. Angewandte Chemie, 2018, 130, 15749-15754.	2.0	4
21	HigB Reciprocally Controls Biofilm Formation and the Expression of Type III Secretion System Genes through Influencing the Intracellular c-di-GMP Level in Pseudomonas aeruginosa. Toxins, 2018, 10, 424.	3.4	26
22	Transcript Profiling of MRSA Biofilms Treated with a Halogenated Phenazine Eradicating Agent: A Platform for Defining Cellular Targets and Pathways Critical to Biofilm Survival. Angewandte Chemie - International Edition, 2018, 57, 15523-15528.	13.8	50
23	Halogenated quinolines bearing polar functionality at the 2-position: Identification of new antibacterial agents with enhanced activity against Staphylococcus epidermidis. European Journal of Medicinal Chemistry, 2018, 155, 705-713.	5.5	14
24	A Highly Potent Class of Halogenated Phenazine Antibacterial and Biofilm-Eradicating Agents Accessed Through a Modular Wohl-Aue Synthesis. Scientific Reports, 2017, 7, 2003.	3.3	37
25	PA3297 Counteracts Antimicrobial Effects of Azithromycin in Pseudomonas aeruginosa. Frontiers in Microbiology, 2016, 7, 317.	3.5	13
26	Multilocus Sequence Typing Analysis of Carbapenem-Resistant Acinetobacter baumannii in a Chinese Burns Institute. Frontiers in Microbiology, 2016, 7, 1717.	3.5	31
27	Pseudomonas aeruginosa Enolase Influences Bacterial Tolerance to Oxidative Stresses and Virulence. Frontiers in Microbiology, 2016, 7, 1999.	3.5	48
28	Synthetically Tuning the 2â€Position of Halogenated Quinolines: Optimizing Antibacterial and Biofilm Eradication Activities via Alkylation and Reductive Amination Pathways. Chemistry - A European Journal, 2016, 22, 9181-9189.	3.3	29
29	Structure–Activity Relationships of a Diverse Class of Halogenated Phenazines That Targets Persistent, Antibiotic-Tolerant Bacterial Biofilms and <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2016, 59, 3808-3825.	6.4	70
30	ldentification of D-amino acid dehydrogenase as an upstream regulator of the autoinduction of a putative acyltransferase in Corynebacterium glutamicum. Journal of Microbiology, 2016, 54, 432-439.	2.8	8
31	Epidemiological characterization of Acinetobacter baumannii bloodstream isolates from a Chinese Burn Institute: A three-year study. Burns, 2016, 42, 1542-1547.	1.9	14
32	DeaD contributes toPseudomonas aeruginosavirulence in a mouse acute pneumonia model. FEMS Microbiology Letters, 2016, 363, fnw227.	1.8	12
33	Oligoribonuclease is required for the type III secretion system and pathogenesis of Pseudomonas aeruginosa. Microbiological Research, 2016, 188-189, 90-96.	5.3	22
34	TatC-dependent translocation of pyoverdine is responsible for the microbial growth suppression. Journal of Microbiology, 2016, 54, 122-130.	2.8	4
35	Structure-Function Analysis of the Transmembrane Protein AmpG from Pseudomonas aeruginosa. PLoS ONE, 2016, 11, e0168060.	2.5	9
36	Halogenated Phenazines that Potently Eradicate Biofilms, MRSA Persister Cells in Nonâ€Biofilm Cultures, and <i>Mycobacterium tuberculosis</i> . Angewandte Chemie - International Edition, 2015, 54, 14819-14823.	13.8	77

SHOUGUANG JIN

#	Article	IF	CITATIONS
37	Optimization of a miniaturized fluid array device for cellâ€free protein synthesis. Biotechnology and Bioengineering, 2015, 112, 2459-2467.	3.3	13
38	A Phytochemical–Halogenated Quinoline Combination Therapy Strategy for the Treatment of Pathogenic Bacteria. ChemMedChem, 2015, 10, 1157-1162.	3.2	20
39	Expression and efficient purification of tag-cleaved active recombinant human insulin-like growth factor-II from Escherichia coli. Biotechnology and Bioprocess Engineering, 2015, 20, 234-241.	2.6	1
40	Efficient Gene Editing in Pluripotent Stem Cells by Bacterial Injection of Transcription Activator-Like Effector Nuclease Proteins. Stem Cells Translational Medicine, 2015, 4, 913-926.	3.3	15
41	Bromophenazine derivatives with potent inhibition, dispersion and eradication activities against Staphylococcus aureus biofilms. RSC Advances, 2015, 5, 1120-1124.	3.6	39
42	Bacterial Delivery of TALEN Proteins for Human Genome Editing. PLoS ONE, 2014, 9, e91547.	2.5	27
43	A novel Pseudomonas aeruginosa-derived effector cooperates with flagella to mediate the upregulation of interleukin 8 in human epithelial cells. Microbial Pathogenesis, 2014, 66, 24-28.	2.9	13
44	Phenazine antibiotic inspired discovery of potent bromophenazine antibacterial agents against Staphylococcus aureus and Staphylococcus epidermidis. Organic and Biomolecular Chemistry, 2014, 12, 881-886.	2.8	74
45	Pseudomonas aeruginosa injects NDK into host cells through a type III secretion system. Microbiology (United Kingdom), 2014, 160, 1417-1426.	1.8	32
46	Nucleoside Diphosphate Kinase and Flagellin from Pseudomonas aeruginosa Induce Interleukin 1 Expression via the Akt/NF-κB Signaling Pathways. Infection and Immunity, 2014, 82, 3252-3260.	2.2	15
47	Distinct Roles of Major Peptidoglycan Recycling Enzymes in β-Lactamase Production in Shewanella oneidensis. Antimicrobial Agents and Chemotherapy, 2014, 58, 6536-6543.	3.2	19
48	Gene identification in Pseudomonas aeruginosa : from bioinformatics to experimental analysis. FASEB Journal, 2012, 26, 978.3.	0.5	0
49	Factors triggering type III secretion in Pseudomonas aeruginosa. Microbiology (United Kingdom), 2005, 151, 3575-3587.	1.8	55
50	The truA gene of Pseudomonas aeruginosa is required for the expression of type III secretory genes. Microbiology (United Kingdom), 2004, 150, 539-547.	1.8	30
51	migA, a quorum-responsive gene of Pseudomonas aeruginosa, is highly expressed in the cystic fibrosis lung environment and modifies low-molecular-mass lipopolysaccharide. Microbiology (United) Tj ETQq1 1 0.784	31 4. gBT	/0v æs lock 10 _
52	Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of ExoS. Microbiology (United Kingdom), 2000, 146, 2531-2541.	1.8	151