Jacqueline Stöckli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5480901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systems-level analysis of insulin action in mouse strains provides insight into tissue- and pathway-specific interactions that drive insulin resistance. Cell Metabolism, 2022, 34, 227-239.e6.	16.2	29
2	Regulated Versus Constitutive Secretion $\hat{a} \in $ A Major Form of Intercellular Communication. , 2022, , .		0
3	The aetiology and molecular landscape of insulin resistance. Nature Reviews Molecular Cell Biology, 2021, 22, 751-771.	37.0	221
4	Defining the protein and lipid constituents of tubular recycling endosomes. Journal of Biological Chemistry, 2021, 296, 100190.	3.4	19
5	Maturation of Lipophagic Organelles in Hepatocytes Is Dependent Upon a Rab10/Dynaminâ€⊋ Complex. Hepatology, 2020, 72, 486-502.	7.3	13
6	Phosphoproteomics reveals conserved exerciseâ€stimulated signaling and AMPK regulation of storeâ€operated calcium entry. EMBO Journal, 2019, 38, e102578.	7.8	54
7	ABHD15 regulates adipose tissue lipolysis and hepatic lipid accumulation. Molecular Metabolism, 2019, 25, 83-94.	6.5	22
8	Tankyrase modulates insulin sensitivity in skeletal muscle cells by regulating the stability of GLUT4 vesicle proteins. Journal of Biological Chemistry, 2018, 293, 8578-8587.	3.4	28
9	High dietary fat and sucrose result in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. Journal of Biological Chemistry, 2018, 293, 5731-5745.	3.4	65
10	Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation. Journal of Biological Chemistry, 2018, 293, 7315-7328.	3.4	110
11	Metabolomic analysis of insulin resistance across different mouse strains and diets. Journal of Biological Chemistry, 2017, 292, 19135-19145.	3.4	36
12	A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. Science Advances, 2016, 2, e1601470.	10.3	115
13	mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Reports, 2016, 17, 29-36.	6.4	88
14	Hyperactivation of the Insulin Signaling Pathway Improves Intracellular Proteostasis by Coordinately Up-regulating the Proteostatic Machinery in Adipocytes. Journal of Biological Chemistry, 2016, 291, 25629-25640.	3.4	15
15	Cross-species gene expression analysis identifies a novel set of genes implicated in human insulin sensitivity. Npj Systems Biology and Applications, 2015, 1, 15010.	3.0	11
16	The RabGAP TBC1D1 Plays a Central Role in Exercise-Regulated Glucose Metabolism in Skeletal Muscle. Diabetes, 2015, 64, 1914-1922.	0.6	62
17	Selective Insulin Resistance in Adipocytes. Journal of Biological Chemistry, 2015, 290, 11337-11348.	3.4	85
18	Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metabolism, 2015, 22, 922-935.	16.2	333

Jacqueline Stöckli

#	Article	IF	CITATIONS
19	Proteomic Analysis of GLUT4 Storage Vesicles Reveals Tumor Suppressor Candidate 5 (TUSC5) as a Novel Regulator of Insulin Action in Adipocytes. Journal of Biological Chemistry, 2015, 290, 23528-23542.	3.4	50
20	Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metabolism, 2015, 22, 948.	16.2	5
21	PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications. BMC Genomics, 2015, 16, 617.	2.8	20
22	Kinome Screen Identifies PFKFB3 and Glucose Metabolism as Important Regulators of the Insulin/Insulin-like Growth Factor (IGF)-1 Signaling Pathway. Journal of Biological Chemistry, 2015, 290, 25834-25846.	3.4	50
23	DOC2 isoforms play dual roles in insulin secretion and insulin-stimulated glucose uptake. Diabetologia, 2014, 57, 2173-2182.	6.3	30
24	Systemic VEGF-A Neutralization Ameliorates Diet-Induced Metabolic Dysfunction. Diabetes, 2014, 63, 2656-2667.	0.6	29
25	Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metabolism, 2013, 17, 1009-1020.	16.2	352
26	Protein Kinase Cε Modulates Insulin Receptor Localization and Trafficking in Mouse Embryonic Fibroblasts. PLoS ONE, 2013, 8, e58046.	2.5	5
27	The Rab GTPase-Activating Protein TBC1D4/AS160 Contains an Atypical Phosphotyrosine-Binding Domain That Interacts with Plasma Membrane Phospholipids To Facilitate GLUT4 Trafficking in Adipocytes. Molecular and Cellular Biology, 2012, 32, 4946-4959.	2.3	58
28	Amplification and Demultiplexing in Insulin-regulated Akt Protein Kinase Pathway in Adipocytes. Journal of Biological Chemistry, 2012, 287, 6128-6138.	3.4	63
29	Membrane Curvature Protein Exhibits Interdomain Flexibility and Binds a Small GTPase. Journal of Biological Chemistry, 2012, 287, 40996-41006.	3.4	17
30	<scp>TBC1D13</scp> is a <scp>RAB35</scp> Specific <scp>GAP</scp> that Plays an Important Role in <scp>GLUT4</scp> Trafficking in Adipocytes. Traffic, 2012, 13, 1429-1441.	2.7	42
31	GLUT4 exocytosis. Journal of Cell Science, 2011, 124, 4147-4159.	2.0	233
32	Insulin-Regulated Trafficking of GLUT4 Requires Ubiquitination. Traffic, 2010, 11, 1445-1454.	2.7	38
33	Cluster Analysis of Insulin Action in Adipocytes Reveals a Key Role for Akt at the Plasma Membrane. Journal of Biological Chemistry, 2010, 285, 2245-2257.	3.4	45
34	Kinetic Evidence for Unique Regulation of GLUT4 Trafficking by Insulin and AMP-activated Protein Kinase Activators in L6 Myotubes. Journal of Biological Chemistry, 2010, 285, 1653-1660.	3.4	67
35	Muscling in on GLUT4 kinetics. Communicative and Integrative Biology, 2010, 3, 260-262.	1.4	11
36	Oligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by inhibiting GLUT4 translocation. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E57-E66.	3.5	34

Jacqueline Stöckli

#	Article	IF	CITATIONS
37	Insulin Action under Arrestin. Cell Metabolism, 2009, 9, 213-214.	16.2	5
38	Regulation of Glucose Transporter 4 Translocation by the Rab Guanosine Triphosphatase-Activating Protein AS160/TBC1D4: Role of Phosphorylation and Membrane Association. Molecular Endocrinology, 2008, 22, 2703-2715.	3.7	56
39	Characterization of the Role of the Rab GTPase-activating Protein AS160 in Insulin-regulated GLUT4 Trafficking. Journal of Biological Chemistry, 2005, 280, 37803-37813.	3.4	330
40	The Palmitoyltransferase of the Cation-dependent Mannose 6-Phosphate Receptor Cycles between the Plasma Membrane and Endosomes. Molecular Biology of the Cell, 2004, 15, 2617-2626.	2.1	17
41	The Acidic Cluster of the CK2 Site of the Cation-dependent Mannose 6-Phosphate Receptor (CD-MPR) but Not Its Phosphorylation Is Required for GGA1 and AP-1 Binding. Journal of Biological Chemistry, 2004, 279, 23542-23549.	3.4	18
42	GLUT4. The AFCS-nature Molecule Pages, 0, , .	0.2	1