
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5480854/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acid stress and compost addition decouple carbon and nitrogen cycling in an agricultural soil: An incubation study. Applied Soil Ecology, 2022, 169, 104219.	4.3	4
2	Topographic attributes override impacts of agronomic practices on prokaryotic community structure. Applied Soil Ecology, 2022, 175, 104446.	4.3	2
3	Increased soil moisture intensifies the impacts of forest-to-pasture conversion on methane emissions and methane-cycling communities in the Eastern Amazon. Environmental Research, 2022, 212, 113139.	7.5	15
4	Maintaining grass coverage increases methane uptake in Amazonian pastures, with a reduction of methanogenic archaea in the rhizosphere. Science of the Total Environment, 2022, 838, 156225.	8.0	5
5	Impacts of land-use change on soil microbial communities and their function in the Amazon Rainforest. Advances in Agronomy, 2022, , 179-258.	5.2	3
6	Rainforest-to-pasture conversion stimulates soil methanogenesis across the Brazilian Amazon. ISME Journal, 2021, 15, 658-672.	9.8	21
7	Dynamics of Fungal and Bacterial Biomass Carbon in Natural Ecosystems: Site‣evel Applications of the CLMâ€Microbe Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002283.	3.8	11
8	Beyond total carbon: conversion of amazon forest to pasture alters indicators of soil C cycling. Biogeochemistry, 2021, 152, 179-194.	3.5	12
9	Microbial Succession under Freeze–Thaw Events and Its Potential for Hydrocarbon Degradation in Nutrient-Amended Antarctic Soil. Microorganisms, 2021, 9, 609.	3.6	4
10	Not just a methane source: Amazonian floodplain sediments harbour a high diversity of methanotrophs with different metabolic capabilities. Molecular Ecology, 2021, 30, 2560-2572.	3.9	9
11	Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil. Journal of Hazardous Materials, 2021, 414, 125494.	12.4	53
12	Sensitivity and variability of soil health indicators in a California cropping system. Soil Science Society of America Journal, 2021, 85, 1827-1842.	2.2	6
13	Influence of Recycled Waste Compost on Soil Food Webs, Nutrient Cycling and Tree Growth in a Young Almond Orchard. Agronomy, 2021, 11, 1745.	3.0	1
14	Species patch size at seeding affects the productivity of mixed legume-grass communities. European Journal of Agronomy, 2021, 129, 126342.	4.1	2
15	Habitat heterogeneity induced by pyrogenic organic matter in wildfire-perturbed soils mediates bacterial community assembly processes. ISME Journal, 2021, 15, 1943-1955.	9.8	23
16	Ecological Processes Shaping Bulk Soil and Rhizosphere Microbiome Assembly in a Long-Term Amazon Forest-to-Agriculture Conversion. Microbial Ecology, 2020, 79, 110-122.	2.8	41
17	Introducing the Mangrove Microbiome Initiative: Identifying Microbial Research Priorities and Approaches To Better Understand, Protect, and Rehabilitate Mangrove Ecosystems. MSystems, 2020, 5, .	3.8	40
18	Belowground changes to community structure alter methane-cycling dynamics in Amazonia. Environment International, 2020, 145, 106131.	10.0	18

#	Article	IF	CITATIONS
19	Soil microbial communities in restored and unrestored coastal dune ecosystems in California. Restoration Ecology, 2020, 28, S311.	2.9	16
20	Boosting landfill gas production from lignin-containing wastes via termite hindgut microorganism. Waste Management, 2020, 105, 299-308.	7.4	9
21	Impacts of directed evolution and soil management legacy on the maize rhizobiome. Soil Biology and Biochemistry, 2020, 145, 107794.	8.8	22
22	Draft Genome Sequences of Strains TAV3 and TAV4 (<i>Verrucomicrobia</i> : <i>Opitutaceae</i>), Isolated from a Wood-Feeding Termite, and <i>In Silico</i> Analysis of Their Polysaccharide-Degrading Enzymes. Microbiology Resource Announcements, 2020, 9, .	0.6	4
23	Diazotrophs Show Signs of Restoration in Amazon Rain Forest Soils with Ecosystem Rehabilitation. Applied and Environmental Microbiology, 2020, 86, .	3.1	11
24	Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biology and Biochemistry, 2020, 151, 108024.	8.8	70
25	Amazon forest-to-agriculture conversion alters rhizosphere microbiome composition while functions are kept. FEMS Microbiology Ecology, 2019, 95, .	2.7	32
26	Deforestation impacts network co-occurrence patterns of microbial communities in Amazon soils. FEMS Microbiology Ecology, 2019, 95, .	2.7	34
27	Determining landscape-level drivers of variability for over fifty soil chemical elements. Science of the Total Environment, 2019, 657, 279-286.	8.0	10
28	Long-term effects of grazing and topography on extra-radical hyphae of arbuscular mycorrhizal fungi in semi-arid grasslands. Mycorrhiza, 2018, 28, 117-127.	2.8	26
29	Iron limitation effects on nitrogen-fixing organisms with possible implications for cyanobacterial blooms. FEMS Microbiology Ecology, 2018, 94, .	2.7	25
30	Draft Genome Sequence of " <i>Candidatus</i> Spirobacillus cienkowskii,―a Pathogen of Freshwater <i>Daphnia</i> Species, Reconstructed from Hemolymph Metagenomic Reads. Microbiology Resource Announcements, 2018, 7, .	0.6	13
31	New Biological Insights Into How Deforestation in Amazonia Affects Soil Microbial Communities Using Metagenomics and Metagenome-Assembled Genomes. Frontiers in Microbiology, 2018, 9, 1635.	3.5	51
32	Conversion of Amazon rainforest to agriculture alters community traits of methane ycling organisms. Molecular Ecology, 2017, 26, 1547-1556.	3.9	78
33	Distinct Biogeographic Patterns for Archaea, Bacteria, and Fungi along the Vegetation Gradient at the Continental Scale in Eastern China. MSystems, 2017, 2, .	3.8	116
34	Soil microbial community dynamics and assembly under long-term land use change. FEMS Microbiology Ecology, 2017, 93, .	2.7	69
35	A Novel Multifunctional Î2-N-Acetylhexosaminidase Revealed through Metagenomics of an Oil-Spilled Mangrove. Bioengineering, 2017, 4, 62.	3.5	13
36	Identification of the Burkholderia pseudomallei bacteriophage ST79 lysis gene cassette. Journal of Applied Microbiology, 2016, 121, 364-372.	3.1	6

#	Article	IF	CITATIONS
37	Hill number as a bacterial diversity measure framework with high-throughput sequence data. Scientific Reports, 2016, 6, 38263.	3.3	28
38	A Step Forward to Empower Global Microbiome Research Through Local Leadership. Trends in Microbiology, 2016, 24, 767-771.	7.7	12
39	Cloning, expression, and characterization of a peptidoglycan hydrolase from the Burkholderia pseudomallei phage ST79. AMB Express, 2016, 6, 77.	3.0	9
40	Shewanella baltica Ecotypes Have Wide Transcriptional Variation under the Same Growth Conditions. MSphere, 2016, 1, .	2.9	3
41	Land use change in the Amazon rain forest favours generalist fungi. Functional Ecology, 2016, 30, 1845-1853.	3.6	58
42	Land-use change drives abundance and community structure alterations of thaumarchaeal ammonia oxidizers in tropical rainforest soils in Rondônia, Brazil. Applied Soil Ecology, 2016, 107, 48-56.	4.3	32
43	Forest-to-pasture conversion increases the diversity of the phylum Verrucomicrobia in Amazon rainforest soils. Frontiers in Microbiology, 2015, 6, 779.	3.5	50
44	Differential Response of Acidobacteria Subgroups to Forest-to-Pasture Conversion and Their Biogeographic Patterns in the Western Brazilian Amazon. Frontiers in Microbiology, 2015, 6, 1443.	3.5	111
45	Complete Genome Sequence of the Opitutaceae Bacterium Strain TAV5, a Potential Facultative Methylotroph of the Wood-Feeding Termite Reticulitermes flavipes. Genome Announcements, 2015, 3, .	0.8	22
46	THE CONTRIBUTION OF SOIL PHYSICOCHEMICAL PROPERTIES TO THE PRESENCE AND GENETIC DIVERSITY OF BURKHOLDERIA PSEUDOMALLEI. Southeast Asian Journal of Tropical Medicine and Public Health, 2015, 46, 38-50.	1.0	16
47	Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. ISME Journal, 2014, 8, 1548-1550.	9.8	131
48	Response of Free-Living Nitrogen-Fixing Microorganisms to Land Use Change in the Amazon Rainforest. Applied and Environmental Microbiology, 2014, 80, 281-288.	3.1	104
49	Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Molecular Ecology, 2014, 23, 2988-2999.	3.9	152
50	Stability, genotypic and phenotypic diversity of <scp><i>S</i></scp> <i>hewanella baltica</i> in the redox transition zone of the <scp>B</scp> altic <scp>S</scp> ea. Environmental Microbiology, 2014, 16, 1854-1866.	3.8	26
51	The Family Opitutaceae. , 2014, , 751-756.		7
52	Development of an ecophysiological model for <i>Diplosphaera colotermitum</i> TAV2, a termite hindgut Verrucomicrobium. ISME Journal, 2013, 7, 1803-1813.	9.8	18
53	Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. Soil Biology and Biochemistry, 2013, 65, 33-38.	8.8	189
54	Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 988-993.	7.1	481

#	Article	IF	CITATIONS
55	High-Quality Draft Genome Sequence of the Opitutaceae Bacterium Strain TAV1, a Symbiont of the Wood-Feeding Termite Reticulitermes flavipes. Journal of Bacteriology, 2012, 194, 2744-2745.	2.2	24
56	Development of a Direct Isolation Procedure for Free-Living Diazotrophs under Controlled Hypoxic Conditions. Applied and Environmental Microbiology, 2012, 78, 5542-5549.	3.1	52
57	Genomic and Physiological Characterization of the Verrucomicrobia Isolate Diplosphaera colitermitum gen. nov., sp. nov., Reveals Microaerophily and Nitrogen Fixation Genes. Applied and Environmental Microbiology, 2012, 78, 1544-1555.	3.1	115
58	A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proceedings of the United States of America, 2012, 109, 17621-17626.	7.1	198
59	Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensisMR-1. BMC Microbiology, 2011, 11, 64.	3.3	30
60	Large-Scale Comparative Phenotypic and Genomic Analyses Reveal Ecological Preferences of Shewanella Species and Identify Metabolic Pathways Conserved at the Genus Level. Applied and Environmental Microbiology, 2011, 77, 5352-5360.	3.1	21
61	Bacterial Communities in the Rhizosphere of Biofuel Crops Grown on Marginal Lands as Evaluated by 16S rRNA Gene Pyrosequences. Bioenergy Research, 2010, 3, 20-27.	3.9	40
62	Phylogenetic and metagenomic analysis of Verrucomicrobia in former agricultural grassland soil. FEMS Microbiology Ecology, 2010, 71, 23-33.	2.7	23
63	Characterization of a bacterial community from a Northeast Siberian seacoast permafrost sample. FEMS Microbiology Ecology, 2010, 74, 103-113.	2.7	31
64	DNA-Stable Isotope Probing Integrated with Metagenomics for Retrieval of Biphenyl Dioxygenase Genes from Polychlorinated Biphenyl-Contaminated River Sediment. Applied and Environmental Microbiology, 2009, 75, 5501-5506.	3.1	96
65	Comparative systems biology across an evolutionary gradient within the <i>Shewanella</i> genus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15909-15914.	7.1	96
66	Towards environmental systems biology of Shewanella. Nature Reviews Microbiology, 2008, 6, 592-603.	28.6	829
67	Phylogenetic Characterization and Prevalence of " <i>Spirobacillus cienkowskii</i> ,―a Red-Pigmented, Spiral-Shaped Bacterial Pathogen of Freshwater <i>Daphnia</i> Species. Applied and Environmental Microbiology, 2008, 74, 1575-1582.	3.1	24
68	Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME Journal, 2007, 1, 134-148.	9.8	198
69	Genetic and Genomic Insights into the Role of Benzoate-Catabolic Pathway Redundancy in <i>Burkholderia xenovorans</i> LB400. Applied and Environmental Microbiology, 2006, 72, 585-595.	3.1	99
70	In situ probing of Xylella fastidiosa in honeydew of a xylem sap-feeding insect using 16S rRNA-targeted fluorescent oligonucleotides. Environmental Microbiology, 2006, 8, 747-754.	3.8	6
71	Detection and characterization of protease secreted by the plant pathogen Xylella fastidiosa. Microbiological Research, 2006, 161, 263-272.	5.3	22
72	Degradation of Aroclor 1242 Dechlorination Products in Sediments by Burkholderia xenovorans LB400(ohb) and Rhodococcus sp. Strain RHA1(fcb). Applied and Environmental Microbiology, 2006, 72, 2476-2482.	3.1	78

#	Article	IF	CITATIONS
73	Identification of bacteria in endodontic infections by sequence analysis of 16S rDNA clone libraries. Journal of Medical Microbiology, 2006, 55, 101-107.	1.8	72
74	Growth and siderophore production of Xylella fastidiosa under iron-limited conditions. Microbiological Research, 2005, 160, 429-436.	5.3	37
75	Characterization of nitrogen-fixing cyanobacteria in the Brazilian Amazon floodplain. Water Research, 2005, 39, 5017-5026.	11.3	49
76	Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics studies on bacterial communities. Environmental Microbiology, 2003, 5, 933-943.	3.8	87
77	Detection and Diversity Assessment of Xylella fastidiosa in Field-Collected Plant and Insect Samples by Using 16S rRNA and gyrB Sequences. Applied and Environmental Microbiology, 2003, 69, 4249-4255.	3.1	74
78	Use of both 16S rRNA and engineered functional genes with real-time PCR to quantify an engineered, PCB-degrading Rhodococcus in soil. Journal of Microbiological Methods, 2002, 51, 181-189.	1.6	26
79	Development of a Rhodococcus Recombinant Strain for Degradation of Products from Anaerobic Dechlorination of PCBs. Environmental Science & amp; Technology, 2001, 35, 663-668.	10.0	42
80	FotossÃntese, remobilização de reservas e crescimento de grãos em dois hÃbridos de milho sob deficiência hÃdrica na fase de enchimento dos grãos. Bragantia, 1992, 51, 151-159.	1.3	9
81	Biogeographic responses and niche occupancy of microbial communities following long-term land-use change. Antonie Van Leeuwenhoek, 0, , .	1.7	0