Norman W H Mason

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5480294/publications.pdf

Version: 2024-02-01

60 papers 11,222 citations

186265 28 h-index 60 g-index

60 all docs 60 docs citations

60 times ranked

11943 citing authors

#	Article	IF	CITATIONS
1	NEW MULTIDIMENSIONAL FUNCTIONAL DIVERSITY INDICES FOR A MULTIFACETED FRAMEWORK IN FUNCTIONAL ECOLOGY. Ecology, 2008, 89, 2290-2301.	3.2	2,318
2	Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 2005, 111, 112-118.	2.7	1,475
3	A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution, 2013, 28, 167-177.	8.7	1,341
4	Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 2010, 24, 867-876.	3.6	1,105
5	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
6	A global metaâ€analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 2015, 18, 1406-1419.	6.4	768
7	Functional Structure of Biological Communities Predicts Ecosystem Multifunctionality. PLoS ONE, 2011, 6, e17476.	2,5	348
8	A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science, 2013, 24, 794-806.	2.2	316
9	Traits Without Borders: Integrating Functional Diversity Across Scales. Trends in Ecology and Evolution, 2016, 31, 382-394.	8.7	305
10	Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. Journal of Ecology, 2011, 99, 788-796.	4.0	193
11	Changes in coexistence mechanisms along a longâ€term soil chronosequence revealed by functional trait diversity. Journal of Ecology, 2012, 100, 678-689.	4.0	181
12	Evidence that niche specialization explains species–energy relationships in lake fish communities. Journal of Animal Ecology, 2008, 77, 285-296.	2.8	161
13	Towards a consensus for calculating dendrogramâ€based functional diversity indices. Oikos, 2008, 117, 794-800.	2.7	143
14	Functional diversity: a tool for answering challenging ecological questions. Journal of Vegetation Science, 2013, 24, 777-780.	2.2	126
15	Functional characters combined with null models reveal inconsistency in mechanisms of species turnover in lacustrine fish communities. Oecologia, 2007, 153, 441-452.	2.0	121
16	Correlations between phylogenetic and functional diversity: mathematical artefacts or true ecological and evolutionary processes?. Journal of Vegetation Science, 2013, 24, 781-793.	2.2	103
17	Which trait dissimilarity for functional diversity: trait means or trait overlap?. Journal of Vegetation Science, 2013, 24, 807-819.	2,2	95
18	Does niche overlap control relative abundance in French lacustrine fish communities? A new method incorporating functional traits. Journal of Animal Ecology, 2008, 77, 661-669.	2.8	89

#	Article	IF	Citations
19	Is the abundance of species determined by their functional traits? A new method with a test using plant communities. Oecologia, 2007, 152, 729-737.	2.0	86
20	Trait probability density (<scp>TPD</scp>): measuring functional diversity across scales based on <scp>TPD</scp> with R. Ecology, 2019, 100, e02876.	3.2	84
21	Stand development moderates effects of ungulate exclusion on foliar traits in the forests of New Zealand. Journal of Ecology, 2010, 98, 1422-1433.	4.0	55
22	Geographic isolation and climate govern the functional diversity of native fish communities in European drainage basins. Global Ecology and Biogeography, 2012, 21, 1083-1095.	5.8	55
23	Propagating Uncertainty in Plot-based Estimates of Forest Carbon Stock and Carbon Stock Change. Ecosystems, 2014, 17, 627-640.	3.4	49
24	Interâ€annual fluctuations in rainfall shift the functional structure of Mediterranean grasslands across gradients of productivity and disturbance. Journal of Vegetation Science, 2015, 26, 538-551.	2.2	47
25	Trait hierarchies and intraspecific variability drive competitive interactions in Mediterranean annual plants. Journal of Ecology, 2019, 107, 2078-2089.	4.0	43
26	Quantifying multimodal trait distributions improves traitâ€based predictions of species abundances and functional diversity. Journal of Vegetation Science, 2015, 26, 46-57.	2.2	42
27	Shoot flammability is decoupled from leaf flammability, but controlled by leaf functional traits. Journal of Ecology, 2020, 108, 641-653.	4.0	39
28	Nationally Representative Plot Network Reveals Contrasting Drivers of Net Biomass Change in Secondary and Old-Growth Forests. Ecosystems, 2017, 20, 944-959.	3.4	32
29	Does trait conservatism guarantee that indicators of phylogenetic community structure will reveal nicheâ€based assembly processes along stress gradients?. Journal of Vegetation Science, 2013, 24, 820-833.	2.2	31
30	Synchronicity, periodicity and bimodality in interâ€annual tree seed production along an elevation gradient. Oikos, 2012, 121, 367-376.	2.7	26
31	Fineâ€scale coexistence patterns along a productivity gradient in wet meadows: shifts from trait convergence to divergence. Ecography, 2016, 39, 338-348.	4.5	26
32	Are alternative stable states more likely in high stress environments? Logic and available evidence do not support Didham et al. 2005 Oikos, 2007, 116, 353-357.	2.7	25
33	Invasive N-fixer Impacts on Litter Decomposition Driven by Changes to Soil Properties Not Litter Quality. Ecosystems, 2017, 20, 1151-1163.	3.4	25
34	Individual-Based Allometric Equations Accurately Measure Carbon Storage and Sequestration in Shrublands. Forests, 2014, 5, 309-324.	2.1	22
35	The Density Awakens: A Reply to Blonder. Trends in Ecology and Evolution, 2016, 31, 667-669.	8.7	22
36	Fire form and function: evidence for exaptive flammability in the New Zealand flora. Plant Ecology, 2016, 217, 645-659.	1.6	21

#	Article	IF	Citations
37	Will use of non-biodiversity objectives to select areas for ecological restoration always compromise biodiversity gains?. Biological Conservation, 2012, 155, 157-168.	4.1	20
38	Leaf economics spectrum–productivity relationships in intensively grazed pastures depend on dominant species identity. Ecology and Evolution, 2016, 6, 3079-3091.	1.9	20
39	Rare species drive local trait diversity in two geographically disjunct examples of a naturally rare alpine ecosystem in <scp>N</scp> ew <scp>Z</scp> ealand. Journal of Vegetation Science, 2012, 23, 626-639.	2.2	17
40	Does complementarity in leaf phenology and inclination promote coâ€existence in a speciesâ€rich meadow? Evidence from functional groups. Journal of Vegetation Science, 2013, 24, 94-100.	2.2	16
41	Resource-use efficiency drives overyielding via enhanced complementarity. Oecologia, 2020, 193, 995-1010.	2.0	16
42	Accentuating the positive while eliminating the negative of alien tree invasions: a multiple ecosystem services approach to prioritising control efforts. Biological Invasions, 2017, 19, 1181-1195.	2.4	15
43	Functional shift of sycamore maple (Acer pseudoplatanus) towards greater plasticity and shade tolerance in its invasive range. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 29, 30-40.	2.7	15
44	Dry calcareous grasslands from two neighboring biogeographic regions: relationship between plant traits and rarity. Biodiversity and Conservation, 2013, 22, 2207-2221.	2.6	14
45	Incorporating measurement error in testing for changes in biodiversity. Methods in Ecology and Evolution, 2018, 9, 1296-1307.	5.2	14
46	If we build – they mostly come: partial functional recovery but persistent compositional differences in wetland beetle community restoration. Restoration Ecology, 2015, 23, 555-565.	2.9	13
47	The role and value of diverse sward mixtures in dairy farm systems of New Zealand: An exploratory assessment. Agricultural Systems, 2017, 152, 18-26.	6.1	12
48	Spatial autocorrelation in plant communities: vegetation texture versus species composition. Ecography, 2007, 30, 801-811.	4.5	11
49	Leaf functional traits at home and abroad: A community perspective of sycamore maple invasion. Forest Ecology and Management, 2020, 464, 118061.	3.2	11
50	Catchment-scale contribution of invasive nitrogen fixing shrubs to nitrate leaching: a scoping study. Journal of the Royal Society of New Zealand, 2016, 46, 85-102.	1.9	9
51	Functional Traits Reveal Processes Driving Natural Afforestation at Large Spatial Scales. PLoS ONE, 2013, 8, e75219.	2.5	8
52	Restricting new forests to conservation lands severely constrains carbon and biodiversity gains in New Zealand. Biological Conservation, 2015, 181, 206-218.	4.1	8
53	Combining field experiments and predictive models to assess potential for increased plant diversity to climateâ€proof intensive agriculture. Ecology and Evolution, 2017, 7, 4907-4918.	1.9	8
54	Wood decay resistance moderates the effects of tree mortality on carbon storage in the indigenous forests of New Zealand. Forest Ecology and Management, 2013, 305, 177-188.	3.2	7

#	Article	IF	CITATIONS
55	Are endemics functionally distinct? Leaf traits of native and exotic woody species in a New Zealand forest. PLoS ONE, 2018, 13, e0196746.	2.5	7
56	Integrating across knowledge systems to drive action on chronic biological invasions. Biological Invasions, 2021, 23, 407-432.	2.4	7
57	Relationships of plant traits and soil biota to soil functions change as nitrogen fertiliser rates increase in an intensively managed agricultural system. Journal of Applied Ecology, 2021, 58, 392-405.	4.0	6
58	Invasion landscapes as socialâ€ecological systems: Role of social factors in invasive plant species control. People and Nature, 2021, 3, 795-810.	3.7	6
59	Masting, mixtures and modes: are two models better than one?. Oikos, 2014, 123, 1144-1152.	2.7	3
60	A higher taxonomic richness does not ensure the functional resilience of saproxylic beetle communities in evergreen <i>Quercus</i> forests. Ecological Entomology, 2021, 46, 1215-1229.	2.2	3