List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5477461/publications.pdf Version: 2024-02-01

ΙΩςÃΩ Ρ. ΡενληÃΩς

#	Article	IF	CITATIONS
1	Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation. Journal of Bacteriology, 2001, 183, 2888-2896.	2.2	742
2	The Enterococcal Surface Protein, Esp, Is Involved in <i>Enterococcus faecalis</i> Biofilm Formation. Applied and Environmental Microbiology, 2001, 67, 4538-4545.	3.1	511
3	SarA and not ÏfB is essential for biofilm development by Staphylococcus aureus. Molecular Microbiology, 2003, 48, 1075-1087.	2.5	400
4	The phage-related chromosomal islands of Gram-positive bacteria. Nature Reviews Microbiology, 2010, 8, 541-551.	28.6	363
5	Role of Biofilm-Associated Protein Bap in the Pathogenesis of Bovine Staphylococcus aureus. Infection and Immunity, 2004, 72, 2177-2185.	2.2	297
6	Multiple mechanisms for the activation of human platelet aggregation by <i>Staphylococcus aureus</i> : roles for the clumping factors ClfA and ClfB, the serine–aspartate repeat protein SdrE and protein A. Molecular Microbiology, 2002, 44, 1033-1044.	2.5	283
7	Bap: A family of surface proteins involved in biofilm formation. Research in Microbiology, 2006, 157, 99-107.	2.1	282
8	β-Lactam Antibiotics Induce the SOS Response and Horizontal Transfer of Virulence Factors in Staphylococcus aureus. Journal of Bacteriology, 2006, 188, 2726-2729.	2.2	279
9	Bacteriophage-mediated spread of bacterial virulence genes. Current Opinion in Microbiology, 2015, 23, 171-178.	5.1	268
10	BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Molecular Microbiology, 2005, 58, 1322-1339.	2.5	267
11	Protein A-Mediated Multicellular Behavior in <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2009, 191, 832-843.	2.2	267
12	Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Molecular Microbiology, 2005, 56, 836-844.	2.5	256
13	Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?. Microbiology (United Kingdom), 2005, 151, 2465-2475.	1.8	243
14	Genome-wide antisense transcription drives mRNA processing in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20172-20177.	7.1	231
15	Genome hypermobility by lateral transduction. Science, 2018, 362, 207-212.	12.6	187
16	Relevant Role of Fibronectin-Binding Proteins in <i>Staphylococcus aureus</i> Biofilm-Associated Foreign-Body Infections. Infection and Immunity, 2009, 77, 3978-3991.	2.2	183
17	Staphylococcus aureus Develops an Alternative, ica- Independent Biofilm in the Absence of the arlRS Two-Component System. Journal of Bacteriology, 2005, 187, 5318-5329.	2.2	182
18	Transfer of Antibiotic Resistance in Staphylococcus aureus. Trends in Microbiology, 2017, 25, 893-905.	7.7	180

#	Article	IF	CITATIONS
19	The Phage-Inducible Chromosomal Islands: A Family of Highly Evolved Molecular Parasites. Annual Review of Virology, 2015, 2, 181-201.	6.7	175
20	Evolutionary Genomics of Staphylococcus aureus Reveals Insights into the Origin and Molecular Basis of Ruminant Host Adaptation. Genome Biology and Evolution, 2010, 2, 454-466.	2.5	174
21	Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nature Communications, 2016, 7, 13333.	12.8	174
22	Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. Nature, 2010, 465, 779-782.	27.8	155
23	Biofilm-associated proteins. Comptes Rendus - Biologies, 2006, 329, 849-857.	0.2	147
24	SarA Is an Essential Positive Regulator of Staphylococcus epidermidis Biofilm Development. Journal of Bacteriology, 2005, 187, 2348-2356.	2.2	145
25	Adaptation of <i>Staphylococcus aureus</i> to ruminant and equine hosts involves SaPlâ€carried variants of von Willebrand factorâ€binding protein. Molecular Microbiology, 2010, 77, 1583-1594.	2.5	137
26	Killing niche competitors by remote-control bacteriophage induction. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1234-1238.	7.1	136
27	Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals. PLoS Pathogens, 2016, 12, e1005711.	4.7	135
28	Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nature Communications, 2013, 4, 2345.	12.8	128
29	Phage-inducible chromosomal islands are ubiquitous within the bacterial universe. ISME Journal, 2018, 12, 2114-2128.	9.8	115
30	Sip, an integrase protein with excision, circularization and integration activities, defines a new family of mobile Staphylococcus aureus pathogenicity islands. Molecular Microbiology, 2003, 49, 193-210.	2.5	114
31	Expression of the Biofilm-Associated Protein Interferes with Host Protein Receptors of Staphylococcus aureus and Alters the Infective Process. Infection and Immunity, 2002, 70, 3180-3186.	2.2	113
32	Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes and Infection, 2010, 12, 55-64.	1.9	113
33	Staphylococcal pathogenicity island interference with helper phage reproduction is a paradigm of molecular parasitism. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16300-16305.	7.1	113
34	<i>Staphylococcus aureus</i> in Animals. Microbiology Spectrum, 2019, 7, .	3.0	113
35	Genetic transduction by phages and chromosomal islands: The new and noncanonical. PLoS Pathogens, 2019, 15, e1007878.	4.7	111
36	Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nature Communications, 2020, 11, 2934.	12.8	110

#	Article	IF	CITATIONS
37	A single natural nucleotide mutation alters bacterial pathogen host tropism. Nature Genetics, 2015, 47, 361-366.	21.4	106
38	Role of Staphylococcal Phage and SaPI Integrase in Intra- and Interspecies SaPI Transfer. Journal of Bacteriology, 2007, 189, 5608-5616.	2.2	103
39	<i>Staphylococcus aureus</i> Pathogenicity Island DNA Is Packaged in Particles Composed of Phage Proteins. Journal of Bacteriology, 2008, 190, 2434-2440.	2.2	100
40	Calcium Inhibits Bap-Dependent Multicellular Behavior in Staphylococcus aureus. Journal of Bacteriology, 2004, 186, 7490-7498.	2.2	97
41	Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface. Microbiology (United Kingdom), 2008, 154, 865-877.	1.8	95
42	SaPI mutations affecting replication and transfer and enabling autonomous replication in the absence of helper phage. Molecular Microbiology, 2008, 67, 493-503.	2.5	92
43	Bap, a Biofilm Matrix Protein of Staphylococcus aureus Prevents Cellular Internalization through Binding to GP96 Host Receptor. PLoS Pathogens, 2012, 8, e1002843.	4.7	87
44	SarA Positively Controls Bap-Dependent Biofilm Formation in Staphylococcus aureus. Journal of Bacteriology, 2005, 187, 5790-5798.	2.2	84
45	Sensory deprivation in Staphylococcus aureus. Nature Communications, 2018, 9, 523.	12.8	83
46	Phage-inducible islands in the Gram-positive cocci. ISME Journal, 2017, 11, 1029-1042.	9.8	82
47	SaPI operon I is required for SaPI packaging and is controlled by LexA. Molecular Microbiology, 2007, 65, 41-50.	2.5	74
48	Staphylococcal pathogenicity island DNA packaging system involving <i>cos</i> -site packaging and phage-encoded HNH endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6016-6021.	7.1	73
49	A pathogenicity island replicon in <i>Staphylococcus aureus</i> replicates as an unstable plasmid. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14182-14188.	7.1	69
50	Bacteriophages benefit from generalized transduction. PLoS Pathogens, 2019, 15, e1007888.	4.7	69
51	Sequence analysis reveals genetic exchanges and intraspecific spread of SaPI2, a pathogenicity island involved in menstrual toxic shock. Microbiology (United Kingdom), 2007, 153, 3235-3245.	1.8	65
52	Ïf B Regulates IS 256 -Mediated Staphylococcus aureus Biofilm Phenotypic Variation. Journal of Bacteriology, 2007, 189, 2886-2896.	2.2	64
53	An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus. Scientific Reports, 2016, 6, 26455.	3.3	61
54	Protection from Staphylococcus aureus mastitis associated with poly-N-acetyl β-1,6 glucosamine specific antibody production using biofilm-embedded bacteria. Vaccine, 2009, 27, 2379-2386.	3.8	58

#	Article	IF	CITATIONS
55	Pathogenicity Island-Directed Transfer of Unlinked Chromosomal Virulence Genes. Molecular Cell, 2015, 57, 138-149.	9.7	52
56	Phage dUTPases Control Transfer of Virulence Genes by a Proto-Oncogenic G Protein-like Mechanism. Molecular Cell, 2013, 49, 947-958.	9.7	51
57	Intra- and inter-generic transfer of pathogenicity island-encoded virulence genes by <i>cos</i> phages. ISME Journal, 2015, 9, 1260-1263.	9.8	49
58	Virus Satellites Drive Viral Evolution and Ecology. PLoS Genetics, 2015, 11, e1005609.	3.5	49
59	Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements. Nature Communications, 2021, 12, 6509.	12.8	46
60	Hijacking the Hijackers: Escherichia coli Pathogenicity Islands Redirect Helper Phage Packaging for Their Own Benefit. Molecular Cell, 2019, 75, 1020-1030.e4.	9.7	45
61	Deciphering the Molecular Mechanism Underpinning Phage Arbitrium Communication Systems. Molecular Cell, 2019, 74, 59-72.e3.	9.7	42
62	Control of <i>Staphylococcus aureus</i> pathogenicity island excision. Molecular Microbiology, 2012, 85, 833-845.	2.5	40
63	Staphylococcal infections in rabbit does on two industrial farms. Veterinary Record, 2007, 160, 869-872.	0.3	34
64	Phase-variable expression of the biofilm-associated protein (Bap) in Staphylococcus aureus. Microbiology (United Kingdom), 2007, 153, 1702-1710.	1.8	33
65	A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria. Nucleic Acids Research, 2013, 41, 7260-7275.	14.5	33
66	dUTPases, the unexplored family of signalling molecules. Current Opinion in Microbiology, 2013, 16, 163-170.	5.1	32
67	Unravelling bacteriophage ϕ11 requirements for packaging and transfer of mobile genetic elements in <i><scp>S</scp>taphylococcus aureus</i> . Molecular Microbiology, 2014, 91, 423-437.	2.5	31
68	Molecular Basis of Lysis–Lysogeny Decisions in Gram-Positive Phages. Annual Review of Microbiology, 2021, 75, 563-581.	7.3	31
69	RinA controls phage-mediated packaging and transfer of virulence genes in Gram-positive bacteria. Nucleic Acids Research, 2011, 39, 5866-5878.	14.5	30
70	Lateral transduction is inherent to the life cycle of the archetypical Salmonella phage P22. Nature Communications, 2021, 12, 6510.	12.8	30
71	Convergent evolution of pathogenicity islands in helper <i>cos</i> phage interference. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150505.	4.0	29
72	Genotypic characterization of Staphylococcus aureus strains isolated from rabbit lesions. Veterinary Microbiology, 2007, 121, 288-298.	1.9	28

#	Article	IF	CITATIONS
73	Beyond the CRISPR-Cas safeguard: PICI-encoded innate immune systems protect bacteria from bacteriophage predation. Current Opinion in Microbiology, 2020, 56, 52-58.	5.1	28
74	Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus. Microbiology (United Kingdom), 2011, 157, 677-684.	1.8	26
75	Staphylococcal phages and pathogenicity islands drive plasmid evolution. Nature Communications, 2021, 12, 5845.	12.8	26
76	Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity island transfer. ELife, 2017, 6, .	6.0	25
77	The arbitrium system controls prophage induction. Current Biology, 2021, 31, 5037-5045.e3.	3.9	22
78	The Peptidoglycan Hydrolase of Staphylococcus aureus Bacteriophage ϕ11 Plays a Structural Role in the Viral Particle. Applied and Environmental Microbiology, 2013, 79, 6187-6190.	3.1	20
79	Another look at the mechanism involving trimeric dUTPases in <i>Staphylococcus aureus</i> pathogenicity island induction involves novel players in the party. Nucleic Acids Research, 2016, 44, 5457-5469.	14.5	20
80	A multihost bacterial pathogen overcomes continuous population bottlenecks to adapt to new host species. Science Advances, 2019, 5, eaax0063.	10.3	20
81	A regulatory cascade controls Staphylococcus aureus pathogenicity island activation. Nature Microbiology, 2021, 6, 1300-1308.	13.3	20
82	Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus. Nucleic Acids Research, 2017, 45, 6507-6519.	14.5	20
83	The role of horizontal gene transfer in <i>Staphylococcus aureus</i> host adaptation. Virulence, 2011, 2, 241-243.	4.4	18
84	Lysogenization of Staphylococcus aureus RN450 by phages ï•11 and ï•80α leads to the activation of the SigB regulon. Scientific Reports, 2018, 8, 12662.	3.3	17
85	Characterization and Expression of Multiple Alternatively Spliced Transcripts of the Goodpasture Antigen Gene Region. Goodpasture Antibodies Recognize Recombinant Proteins Representing the Autoantigen and One of its Alternative Forms. FEBS Journal, 1995, 229, 754-760.	0.2	17
86	Phosphorylation of the Goodpasture Antigen by Type A Protein Kinases. Journal of Biological Chemistry, 1995, 270, 13254-13261.	3.4	16
87	Structure–function analysis of the SaPlbov1 replication origin in Staphylococcus aureus. Plasmid, 2012, 67, 183-190.	1.4	16
88	Biotechnological War against Biofilms. Could Phages Mean the End of Device-Related Infections?. International Journal of Artificial Organs, 2007, 30, 805-812.	1.4	14
89	Hydrophobicity of ruminant mastitisStaphylococcus aureus in relation to bacterial aging and slime production. Current Microbiology, 1992, 25, 173-179.	2.2	13
90	Biofilm Related Infections: Is There a Place for Conservative Treatment of Port-Related Bloodstream Infections?. International Journal of Artificial Organs, 2006, 29, 379-386.	1.4	13

#	Article	IF	CITATIONS
91	<i>Staphylococcus aureus</i> in Animals. , 0, , 731-746.		12
92	Shape shifter: redirection of prolate phage capsid assembly by staphylococcal pathogenicity islands. Nature Communications, 2021, 12, 6408.	12.8	12
93	An rpsL-based allelic exchange vector for Staphylococcus aureus. Plasmid, 2015, 79, 8-14.	1.4	11
94	The structure of a polygamous repressor reveals how phage-inducible chromosomal islands spread in nature. Nature Communications, 2019, 10, 3676.	12.8	11
95	Inhibiting the two-component system GraXRS with verteporfin to combat Staphylococcus aureus infections. Scientific Reports, 2020, 10, 17939.	3.3	10
96	Convergent evolution involving dimeric and trimeric dUTPases in pathogenicity island mobilization. PLoS Pathogens, 2017, 13, e1006581.	4.7	9
97	Radical genome remodelling accompanied the emergence of a novel host-restricted bacterial pathogen. PLoS Pathogens, 2021, 17, e1009606.	4.7	9
98	A novel ejection protein from bacteriophage 80α that promotes lytic growth. Virology, 2018, 525, 237-247.	2.4	8
99	Phage-inducible chromosomal islands promote genetic variability by blocking phage reproduction and protecting transductants from phage lysis. PLoS Genetics, 2022, 18, e1010146.	3.5	8
100	Dissecting the link between the enzymatic activity and the SaPI inducing capacity of the phage 80 $\hat{l}\pm$ dUTPase. Scientific Reports, 2017, 7, 11234.	3.3	6
101	Rebooting Synthetic Phage-Inducible Chromosomal Islands: One Method to Forge Them All. Biodesign Research, 2020, 2020, .	1.9	6
102	Insights into the mechanism of action of the arbitrium communication system in SPbeta phages. Nature Communications, 2022, 13, .	12.8	6
103	Role of an intramammary device in protection against experimentally induced staphylococcal mastitis in ewes. American Journal of Veterinary Research, 1993, 54, 732-7.	0.6	1