List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5477115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inline-tandem purification of viruses from cell lysate by agarose-based chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1192, 123140.	2.3	1
2	Novel haloarchaeal viruses from Lake Retba infecting <i>Haloferax</i> and <i>Halorubrum</i> species. Environmental Microbiology, 2019, 21, 2129-2147.	3.8	28
3	Structural basis for assembly of vertical single Î ² -barrel viruses. Nature Communications, 2019, 10, 1184.	12.8	25
4	Assembly of complex viruses exemplified by a halophilic euryarchaeal virus. Nature Communications, 2019, 10, 1456.	12.8	17
5	The structure of a prokaryotic viral envelope protein expands the landscape of membrane fusion proteins. Nature Communications, 2019, 10, 846.	12.8	37
6	Membrane-containing virus particles exhibit the mechanics of a composite material for genome protection. Nanoscale, 2018, 10, 7769-7779.	5.6	12
7	The Unexplored Diversity of Pleolipoviruses: The Surprising Case of Two Viruses with Identical Major Structural Modules. Genes, 2018, 9, 131.	2.4	8
8	Extremely halophilic pleomorphic archaeal virus HRPV9 extends the diversity of pleolipoviruses with integrases. Research in Microbiology, 2018, 169, 500-504.	2.1	13
9	Nucleic and Amino Acid Sequences Support Structure-Based Viral Classification. Journal of Virology, 2017, 91, .	3.4	27
10	Membrane-assisted viral DNA ejection. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 664-672.	2.4	15
11	The enigmatic archaeal virosphere. Nature Reviews Microbiology, 2017, 15, 724-739.	28.6	169
12	Regulation of kynurenine biosynthesis during influenza virus infection. FEBS Journal, 2017, 284, 222-236.	4.7	56
13	HCIV-1 and Other Tailless Icosahedral Internal Membrane-Containing Viruses of the Family Sphaerolipoviridae. Viruses, 2017, 9, 32.	3.3	24
14	ICTV Virus Taxonomy Profile: Pleolipoviridae. Journal of General Virology, 2017, 98, 2916-2917.	2.9	19
15	Monitoring Physiological Changes in Haloarchaeal Cell during Virus Release. Viruses, 2016, 8, 59.	3.3	16
16	The complete genome of a viable archaeum isolated from 123â€millionâ€yearâ€old rock salt. Environmental Microbiology, 2016, 18, 565-579.	3.8	31
17	Virusâ€host interplay in high salt environments. Environmental Microbiology Reports, 2016, 8, 431-444.	2.4	21
18	Archaeal <i>Haloarcula californiae</i> Icosahedral Virus 1 Highlights Conserved Elements in Icosahedral Membrane-Containing DNA Viruses from Extreme Environments. MBio, 2016, 7, .	4.1	16

#	Article	IF	CITATIONS
19	Asymmetric flow field flow fractionation methods for virus purification. Journal of Chromatography A, 2016, 1469, 108-119.	3.7	23
20	Vesicle-like virion of Haloarcula hispanica pleomorphic virus 3 preserves high infectivity in saturated salt. Virology, 2016, 499, 40-51.	2.4	18
21	Immuno-modulating properties of saliphenylhalamide, SNS-032, obatoclax, and gemcitabine. Antiviral Research, 2016, 126, 69-80.	4.1	16
22	K2 killer toxin-induced physiological changes in the yeast <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2016, 16, fow003.	2.3	23
23	Buried Alive: Microbes from Ancient Halite. Trends in Microbiology, 2016, 24, 148-160.	7.7	50
24	Temperature and pH dependence of DNA ejection from archaeal lemon-shaped virus His1. European Biophysics Journal, 2016, 45, 435-442.	2.2	4
25	Pleolipoviridae, a newly proposed family comprising archaeal pleomorphic viruses with single-stranded or double-stranded DNA genomes. Archives of Virology, 2016, 161, 249-256.	2.1	41
26	Identification and characterization of <scp>SNJ</scp> 2, the first temperate pleolipovirus integrating into the genome of the <scp>SNJ</scp> 1â€lysogenic archaeal strain. Molecular Microbiology, 2015, 98, 1002-1020.	2.5	36
27	Elongation-Competent Pauses Govern the Fidelity of a Viral RNA-Dependent RNA Polymerase. Cell Reports, 2015, 10, 983-992.	6.4	72
28	Comparison of Lipid-Containing Bacterial and Archaeal Viruses. Advances in Virus Research, 2015, 92, 1-61.	2.1	25
29	Lemon-shaped halo archaeal virus His1 with uniform tail but variable capsid structure. Proceedings of the United States of America, 2015, 112, 2449-2454.	7.1	43
30	Haloarchaeal virus morphotypes. Biochimie, 2015, 118, 333-343.	2.6	25
31	Archaeal Viruses Multiply: Temporal Screening in a Solar Saltern. Viruses, 2015, 7, 1902-1926.	3.3	32
32	Haloviruses of archaea, bacteria, and eukaryotes. Current Opinion in Microbiology, 2015, 25, 40-48.	5.1	33
33	Insight into the Assembly of Viruses with Vertical Single Î ² -barrel Major Capsid Proteins. Structure, 2015, 23, 1866-1877.	3.3	29
34	Sulfolobus Spindle-Shaped Virus 1 Contains Glycosylated Capsid Proteins, a Cellular Chromatin Protein, and Host-Derived Lipids. Journal of Virology, 2015, 89, 11681-11691.	3.4	54
35	MAP kinase p38 <i>α</i> regulates type III interferon (<i>IFN-</i> λ <i>1</i>) gene expression in human monocyte-derived dendritic cells in response to RNA stimulation. Journal of Leukocyte Biology, 2015, 97, 307-320.	3.3	22
36	Innate responses to small interfering RNA pools inhibiting herpes simplex virus infection in astrocytoid and epithelial cells. Innate Immunity, 2015, 21, 349-357.	2.4	17

#	Article	IF	CITATIONS
37	A Structural Model of the Genome Packaging Process in a Membrane-Containing Double Stranded DNA Virus. PLoS Biology, 2014, 12, e1002024.	5.6	41
38	Archaeal viruses and bacteriophages: comparisons and contrasts. Trends in Microbiology, 2014, 22, 334-344.	7.7	91
39	Electrostatic Interactions Drive the Self-Assembly and the Transcription Activity of the Pseudomonas Phage Â6 Procapsid. Journal of Virology, 2014, 88, 7112-7116.	3.4	2
40	Seeing the Portal in Membrane-containing Bacteriophage PRD1 by Cryo-EM. Microscopy and Microanalysis, 2014, 20, 1250-1251.	0.4	0
41	Halophilic Archaea Cultivated from Surface Sterilized Middle-Late Eocene Rock Salt Are Polyploid. PLoS ONE, 2014, 9, e110533.	2.5	34
42	Insights into Head-Tailed Viruses Infecting Extremely Halophilic Archaea. Journal of Virology, 2013, 87, 3248-3260.	3.4	57
43	Mechanism of Membranous Tunnelling Nanotube Formation in Viral Genome Delivery. PLoS Biology, 2013, 11, e1001667.	5.6	75
44	Virion Architecture Unifies Globally Distributed Pleolipoviruses Infecting Halophilic Archaea. Journal of Virology, 2012, 86, 5067-5079.	3.4	78
45	Closely Related Archaeal Haloarcula hispanica Icosahedral Viruses HHIV-2 and SH1 Have Nonhomologous Genes Encoding Host Recognition Functions. Journal of Virology, 2012, 86, 4734-4742.	3.4	48
46	Virion Architecture Unifies Globally Distributed Pleolipoviruses Infecting Halophilic Archaea. Journal of Virology, 2012, 86, 6384-6384.	3.4	2
47	Structure Unifies the Viral Universe. Annual Review of Biochemistry, 2012, 81, 795-822.	11.1	252
48	Diversity in prokaryotic glycosylation: an archaealâ€derived Nâ€linked glycan contains legionaminic acid. Molecular Microbiology, 2012, 84, 578-593.	2.5	42
49	Global network of specific virus–host interactions in hypersaline environments. Environmental Microbiology, 2012, 14, 426-440.	3.8	147
50	The Single-Stranded DNA Genome of Novel Archaeal Virus <i>Halorubrum</i> Pleomorphic Virus 1 Is Enclosed in the Envelope Decorated with Glycoprotein Spikes. Journal of Virology, 2010, 84, 788-798.	3.4	66
51	What Does it Take to Make a Virus: The Concept of the Viral 'Self'. , 2010, , 35-58.		17
52	An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope. Molecular Microbiology, 2009, 72, 307-319.	2.5	135
53	Biochemical and structural characterisation of membrane-containing icosahedral dsDNA bacteriophages infecting thermophilic Thermus thermophilus. Virology, 2008, 379, 10-19.	2.4	44
54	Insights into Virus Evolution and Membrane Biogenesis from the Structure of the Marine Lipid-Containing Bacteriophage PM2. Molecular Cell, 2008, 31, 749-761.	9.7	116

#	Article	IF	CITATIONS
55	Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8008-8013.	7.1	78
56	Structural Basis of Mechanochemical Coupling in a Hexameric Molecular Motor. Journal of Biological Chemistry, 2008, 283, 3607-3617.	3.4	30
57	Quantitative dissociation of archaeal virus SH1 reveals distinct capsid proteins and a lipid core. Virology, 2006, 356, 4-11.	2.4	36
58	What does structure tell us about virus evolution?. Current Opinion in Structural Biology, 2005, 15, 655-663.	5.7	348
59	SH1: A novel, spherical halovirus isolated from an Australian hypersaline lake. Virology, 2005, 335, 22-33.	2.4	116
60	Constituents of SH1, a Novel Lipid-Containing Virus Infecting the Halophilic Euryarchaeon Haloarcula hispanica. Journal of Virology, 2005, 79, 9097-9107.	3.4	96
61	Back-priming mode of ϕ6 RNA-dependent RNA polymerase. Journal of General Virology, 2005, 86, 521-526.	2.9	28
62	Integral Membrane Protein P16 of Bacteriophage PRD1 Stabilizes the Adsorption Vertex Structure. Journal of Virology, 2004, 78, 9790-9797.	3.4	15
63	Membrane structure and interactions with protein and DNA in bacteriophage PRD1. Nature, 2004, 432, 122-125.	27.8	133
64	Insights into assembly from structural analysis of bacteriophage PRD1. Nature, 2004, 432, 68-74.	27.8	246
65	The Receptor Binding Protein P2 of PRD1, a Virus Targeting Antibiotic-Resistant Bacteria, Has a Novel Fold Suggesting Multiple Functions. Structure, 2003, 11, 309-322.	3.3	46
66	Do viruses form lineages across different domains of life?. Research in Microbiology, 2003, 154, 231-236.	2.1	179
67	Self–organization: making complex infectious viral particles from purified precursors. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 1187-1203.	3.4	2
68	Evolution of Viral Structure. Theoretical Population Biology, 2002, 61, 461-470.	1.1	147
69	Minor proteins, mobile arms and membrane–capsid interactions in the bacteriophage PRD1 capsid. Nature Structural Biology, 2002, 9, 756-763.	9.7	80
70	Primer-independent RNA sequencing with bacteriophage φ6 RNA polymerase and chain terminators. Rna, 2001, 7, 774-781.	3.5	21
71	A mechanism for initiating RNA-dependent RNA polymerization. Nature, 2001, 410, 235-240.	27.8	458
72	Combined EM/X-Ray Imaging Yields a Quasi-Atomic Model of the Adenovirus-Related Bacteriophage PRD1 and Shows Key Capsid and Membrane Interactions. Structure, 2001, 9, 917-930.	3.3	69

#	Article	IF	CITATIONS
73	Use of lipophilic anions for estimation of biomass and cell viability. Biotechnology and Bioengineering, 2000, 71, 208-216.	3.3	11
74	Bacteriophage PRD1 Capsid Structure: Iterative Combination of Threedimensional Electron Microscopy and Microanalysis, 2000, 6, 284-285.	0.4	0
75	RNA secondary structures of the bacteriophage φ6 packaging regions. Rna, 2000, 6, 880-889.	3.5	38
76	Local Average Intensity-Based Method for Identifying Spherical Particles in Electron Micrographs. Journal of Structural Biology, 2000, 131, 126-134.	2.8	101
77	Assembly of Bacteriophage PRD1 Spike Complex: Role of the Multidomain Protein P5â€. Biochemistry, 2000, 39, 10566-10573.	2.5	41
78	Packaging and replication regulation revealed by chimeric genome segments of double-stranded RNA bacteriophage φ6. Rna, 1999, 5, 446-454.	3.5	18
79	Purification and characterization of the assembly factor P17 of the lipid-containing bacteriophage PRD1. FEBS Journal, 1999, 260, 549-558.	0.2	11
80	Viral Evolution Revealed by Bacteriophage PRD1 and Human Adenovirus Coat Protein Structures. Cell, 1999, 98, 825-833.	28.9	275
81	Bacterial diversity at surface water in three locations within the Baltic sea as revealed by culture-dependent molecular techniques. Journal of Basic Microbiology, 1996, 36, 163-176.	3.3	7
82	Gene XV of Bacteriophage PRD1 Encodes a Lytic Enzyme with Muramidase Activity. FEBS Journal, 1994, 225, 341-346.	0.2	24
83	Isolation of a Phospholipid-Free Protein Shell of Bacteriophage PRD1, an Escherichia coli Virus with an Internal Membrane. Virology, 1993, 194, 564-569.	2.4	26
84	Large-scale purification of membrane-containing bacteriophage PRD1 and its subviral particles and its subviral particles. Virology, 1991, 181, 348-352.	2.4	52
85	Capsomer proteins of bacteriophage PRD1, a bacterial virus with a membrane. Virology, 1990, 177, 445-451.	2.4	85
86	Quantitation of the adsorption and penetration stages of bacteriophage φ6 infection. Virology, 1989, 171, 229-238.	2.4	133
87	Membrane fusion in prokaryotes: bacteriophage phi 6 membrane fuses with the Pseudomonas syringae outer membrane EMBO Journal, 1987, 6, 1467-1473.	7.8	95
88	Membrane fusion in prokaryotes: bacteriophage phi 6 membrane fuses with the Pseudomonas syringae outer membrane. EMBO Journal, 1987, 6, 1467-73.	7.8	51