
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5477100/publications.pdf Version: 2024-02-01

FRIC M C ETTER

#	Article	IF	CITATIONS
1	Spatioâ€ŧemporal clustering and risk factor analysis of bovine theileriosis (<i>Theileria parva</i>) in Zimbabwe from 1995 to 2018. Transboundary and Emerging Diseases, 2022, 69, 1186-1196.	3.0	2
2	Prioritisation of Provinces for African Swine Fever Intervention in South Africa through Decision Matrix Analysis. Pathogens, 2022, 11, 135.	2.8	1
3	Spatio-temporal patterns and risk factors of foot-and-mouth disease in Malawi between 1957 and 2019. Preventive Veterinary Medicine, 2022, 204, 105639.	1.9	3
4	Occurrence, Serotypes and Virulence Characteristics of Shiga-Toxin-Producing Escherichia coli Isolates from Goats on Communal Rangeland in South Africa. Toxins, 2022, 14, 353.	3.4	7
5	A one health investigation of pathogenic trypanosomes of cattle in Malawi. Preventive Veterinary Medicine, 2021, 188, 105255.	1.9	6
6	Do wild suids from Ndumo Game Reserve, South Africa, play a role in the maintenance and transmission of African swine fever to domestic pigs?. Transboundary and Emerging Diseases, 2021, 68, 2774-2786.	3.0	4
7	Critical Evaluation of Cross-Sectoral Collaborations to Inform the Implementation of the "One Health―Approach in Guadeloupe. Frontiers in Public Health, 2021, 9, 652079.	2.7	1
8	Review of African swine fever outbreaks history in South Africa: From 1926 to 2018. Onderstepoort Journal of Veterinary Research, 2021, 88, e1-e10.	1.2	7
9	Ticks and Tick-Borne Diseases in Central America and the Caribbean: A One Health Perspective. Pathogens, 2021, 10, 1273.	2.8	19
10	Knowledge of Brucellosis, Health-Seeking Behaviour, and Risk Factors for Brucella Infection amongst Workers on Cattle Farms in Gauteng, South Africa. Pathogens, 2021, 10, 1484.	2.8	4
11	Bovine Brucellosis in Gauteng, South Africa: Seroprevalence amongst Cattle Handlers and Variables Associated with Seropositive Cattle Herds, 2014–2016. Pathogens, 2021, 10, 1547.	2.8	3
12	Progressive Area Elimination of Bovine Brucellosis, 2013–2018, in Gauteng Province, South Africa: Evaluation Using Laboratory Test Reports. Pathogens, 2021, 10, 1595.	2.8	1
13	Wildlife-cattle interactions emerge as drivers of bovine tuberculosis in traditionally farmed cattle. Preventive Veterinary Medicine, 2020, 174, 104847.	1.9	12
14	Surveillance of Antibiotic Resistance of Maltose-Negative Staphylococcus aureus in South African Dairy Herds. Antibiotics, 2020, 9, 616.	3.7	3
15	Investigation of African swine fever outbreaks in pigs outside the controlled areas of South Africa, 2012–2017. Journal of the South African Veterinary Association, 2020, 91, e1-e9.	0.6	13
16	Tracing cross species transmission of Mycobacterium bovis at the wildlife/livestock interface in South Africa. BMC Microbiology, 2020, 20, 49.	3.3	18
17	Occurrence and Antimicrobial Resistance Profiles of <i>Campylobacter jejuni</i> , <i>Campylobacter coli</i> , and <i>Campylobacter upsaliensis</i> in Beef Cattle on Cow–Calf Operations in South Africa. Foodborne Pathogens and Disease, 2020, 17, 440-446.	1.8	15
18	Understanding African swine fever outbreaks in domestic pigs in a sylvatic endemic area: The case of the South African controlled area between 1977–2017. Transboundary and Emerging Diseases, 2020, 67, 2753-2769.	3.0	12

#	Article	IF	CITATIONS
19	Climatic and regional antibiotic resistance patterns of Staphylococcus aureus in South African dairy herds. Onderstepoort Journal of Veterinary Research, 2019, 86, e1-e9.	1.2	8
20	Risk Factors for Zoonotic Tuberculosis at the Wildlife–Livestock–Human Interface in South Africa. Pathogens, 2019, 8, 101.	2.8	19
21	Spatial and seasonal patterns of FMD primary outbreaks in cattle in Zimbabwe between 1931 and 2016. Veterinary Research, 2019, 50, 73.	3.0	14
22	Prevalence of Mycobacterium bovis infection in traditionally managed cattle at the wildlife-livestock interface in South Africa in the absence of control measures. Veterinary Research Communications, 2019, 43, 155-164.	1.6	14
23	Prevalence and risk factors associated with Campylobacter spp. occurrence in healthy dogs visiting four rural community veterinary clinics in South Africa. Onderstepoort Journal of Veterinary Research, 2019, 86, e1-e6.	1.2	11
24	Antimicrobial Resistance Trends in <i>Escherichia coli</i> in South African Poultry: 2009–2015. Foodborne Pathogens and Disease, 2019, 16, 652-660.	1.8	18
25	Seroprevalence and associated risk factors of Toxoplasma gondii infection in domestic animals in southeastern South Africa. Onderstepoort Journal of Veterinary Research, 2019, 86, e1-e6.	1.2	22
26	Epidemiology of African swine fever in Africa today: Sylvatic cycle versus socioâ€economic imperatives. Transboundary and Emerging Diseases, 2019, 66, 672-686.	3.0	89
27	Faecal <i>Escherichia coli</i> as biological indicator of spatial interaction between domestic pigs and wild boar (<i>Sus scrofa</i>) in Corsica. Transboundary and Emerging Diseases, 2018, 65, 746-757.	3.0	12
28	Comparison of Three Methods to Assess the Potential for Bushpig-Domestic Pig Interactions at the Wildlife—Livestock Interface in Uganda. Frontiers in Veterinary Science, 2018, 5, 295.	2.2	14
29	Experimental Evaluation of FaecalEscherichia coliand Hepatitis E Virus as Biological Indicators of Contacts Between Domestic Pigs and Eurasian Wild Boar. Transboundary and Emerging Diseases, 2017, 64, 487-494.	3.0	10
30	Epidemiological and partial budget analysis for treatment of subclinical Staphylococcus aureus intramammary infections considering microbiological and cytological scenarios. Preventive Veterinary Medicine, 2017, 148, 66-77.	1.9	3
31	Prediction of Pig Trade Movements in Different European Production Systems Using Exponential Random Graph Models. Frontiers in Veterinary Science, 2017, 4, 27.	2.2	16
32	Questionnaire-Based Assessment of Wild Boar/Domestic Pig Interactions and Implications for Disease Risk Management in Corsica. Frontiers in Veterinary Science, 2017, 4, 198.	2.2	27
33	Somatic cell count thresholds in composite and quarter milk samples as indicator of bovine intramammary infection status. Onderstepoort Journal of Veterinary Research, 2017, 84, e1-e10.	1.2	36
34	Validity of somatic cell count as indicator of pathogen-specific intramammary infections. Journal of the South African Veterinary Association, 2017, 88, e1-e10.	0.6	24
35	Assessing the extent and use of risk analysis methodologies in Africa, using data derived from the Performance of Veterinary Services (PVS) Pathway. OIE Revue Scientifique Et Technique, 2017, 36, 163-174.	1.2	4
36	Spatial and Functional Organization of Pig Trade in Different European Production Systems: Implications for Disease Prevention and Control. Frontiers in Veterinary Science, 2016, 3, 4.	2.2	36

#	Article	IF	CITATIONS
37	First description of african horse sickness virus serotype 7 in healthy horses in northern Senegal. International Journal of Infectious Diseases, 2016, 53, 65.	3.3	0
38	Transmission of foot and mouth disease at the wildlife/livestock interface of the Kruger National Park, South Africa: Can the risk be mitigated?. Preventive Veterinary Medicine, 2016, 126, 19-29.	1.9	34
39	Living at the edge of an interface area in Zimbabwe: cattle owners, commodity chain and health workers' awareness, perceptions and practices on zoonoses. BMC Public Health, 2015, 16, 84.	2.9	21
40	Brucella sero-prevalence and modifiable risk factors among predisposed cattle keepers and consumers of un-pasteurized milk in Mbarara and Kampala districts, Uganda. African Health Sciences, 2015, 14, 790.	0.7	21
41	Multivariate analysis of traditional pig management practices and their potential impact on the spread of infectious diseases in Corsica. Preventive Veterinary Medicine, 2015, 121, 246-256.	1.9	24
42	Epidemiological surveillance methods for vector-borne diseases. OIE Revue Scientifique Et Technique, 2015, 34, 235-247.	1.2	15
43	Bridge hosts for avian influenza viruses at the wildlife/domestic interface: An eco-epidemiological framework implemented in southern Africa. Preventive Veterinary Medicine, 2014, 117, 590-600.	1.9	41
44	Brucellosis and bovine tuberculosis at an animal-human interface in Zimbabwe. International Journal of Infectious Diseases, 2014, 21, 237.	3.3	0
45	Review of the sylvatic cycle of African swine fever in sub-Saharan Africa and the Indian ocean. Virus Research, 2013, 173, 212-227.	2.2	124
46	African swine fever virus serodiagnosis: A general review with a focus on the analyses of African serum samples. Virus Research, 2013, 173, 159-167.	2.2	89
47	Outbreaks of African horse sickness in Senegal, and methods of control of the 2007 epidemic. Veterinary Record, 2013, 172, 152-152.	0.3	40
48	Preliminary Assessment of Bovine Tuberculosis at the Livestock/Wildlife Interface in two Protected Areas of Northern Botswana. Transboundary and Emerging Diseases, 2013, 60, 28-36.	3.0	13
49	The mosquito <i>Aedes (Aedimorphus) vexans arabiensis</i> as a probable vector bridging the West Nile virus between birds and horses in Barkedji (Ferlo, Senegal). Medical and Veterinary Entomology, 2012, 26, 106-111.	1.5	17
50	Feeding behaviour of potential vectors of West Nile virus in Senegal. Parasites and Vectors, 2011, 4, 99.	2.5	23
51	Seroprevalence of African Swine Fever in Senegal, 2006. Emerging Infectious Diseases, 2011, 17, 49-54.	4.3	28
52	Can Environmental and Socioeconomic Factors Explain the Recent Emergence of Rift Valley Fever in Yemen, 2000–2001?. Vector-Borne and Zoonotic Diseases, 2011, 11, 773-779.	1.5	36
53	Environmental risk factors of West Nile virus infection of horses in the Senegal River basin. Epidemiology and Infection, 2010, 138, 1601-1609.	2.1	21
54	Pulmonary Tuberculosis and <i>Mycobacterium bovis,</i> Uganda. Emerging Infectious Diseases, 2009, 15, 124-125.	4.3	19

#	Article	IF	CITATIONS
55	Scientific review on African Swine Fever. EFSA Supporting Publications, 2009, 6, 5E.	0.7	21
56	African Swine Fever Virus DNA in Soft Ticks, Senegal. Emerging Infectious Diseases, 2007, 13, 1928-1931.	4.3	37
57	Environmental changes, disease ecology and geographic information system-based tools for risk assessment. Veterinaria Italiana, 2007, 43, 381-91.	0.5	Ο
58	The use of remote sensing for the ecological description of multi-host disease systems: a case study on West Nile virus in southern France. Veterinaria Italiana, 2007, 43, 687-97.	0.5	7
59	Risk Analysis and Bovine Tuberculosis, a Re-emerging Zoonosis. Annals of the New York Academy of Sciences, 2006, 1081, 61-73.	3.8	85
60	Interactions between nutrition and gastrointestinal infections with parasitic nematodes in goats. Small Ruminant Research, 2005, 60, 141-151.	1.2	113
61	Effects of the initial level of milk production and of the dietary protein intake on the course of natural nematode infection in dairy goats. Veterinary Parasitology, 2000, 92, 1-13.	1.8	44
62	Efficacy of copper oxide needles for the control of nematode parasites in dairy goats. Veterinary Research Communications, 2000, 24, 389-399.	1.6	46
63	A questionnaire survey on the practices adopted to control gastrointestinal nematode parasitism in dairy goat farms in France. Veterinary Research Communications, 2000, 24, 459-469.	1.6	25
64	Susceptibility of high and low producer dairy goats to single experimental infection with Trichostrongylus colubriformis. Parasitology Research, 2000, 86, 870-875.	1.6	7
65	The effect of two levels of dietary protein on resistance and resilience of dairy goats experimentally infected with Trichostrongylus colubriformis: comparison between high and low producers. Veterinary Research, 2000, 31, 247-258.	3.0	29
66	Activity of eprinomectin in goats against experimental infections with <i>Haemonchus contortus, Teladorsagia circumcincta</i> and <i>Trichostrongylus colubriformis</i> . Veterinary Record, 1999, 144, 99-100.	0.3	37
67	Understanding ASF dynamic in South Africa: from spatio-temporal analysis at national level to fine special network analysis Frontiers in Veterinary Science, 0, 6, .	2.2	1