Mark Copley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5475716/publications.pdf Version: 2024-02-01

MARK CODIEV

#	Article	IF	CITATIONS
1	Lithium-ion batteries – Current state of the art and anticipated developments. Journal of Power Sources, 2020, 479, 228708.	7.8	401
2	Synthesis of multimodal porous ZnCo2O4 and its electrochemical properties as an anode material for lithium ion batteries. Journal of Power Sources, 2015, 294, 112-119.	7.8	99
3	Manganese phosphate coated Li[Ni0.6Co0.2Mn0.2]O2 cathode material: Towards superior cycling stability at elevated temperature and high voltage. Journal of Power Sources, 2018, 402, 263-271.	7.8	99
4	MnPO ₄ oated Li(Ni _{0.4} Co _{0.2} Mn _{0.4})O ₂ for Lithium(â€Ion) Batteries with Outstanding Cycling Stability and Enhanced Lithiation Kinetics. Advanced Energy Materials, 2018, 8, 1801573.	19.5	87
5	Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities. Johnson Matthey Technology Review, 2015, 59, 34-44.	1.0	67
6	The importance of "going nano―for high power battery materials. Journal of Power Sources, 2012, 219, 217-222.	7.8	65
7	Toward greener lithium-ion batteries: Aqueous binder-based LiNi0.4Co0.2Mn0.4O2 cathode material with superior electrochemical performance. Journal of Power Sources, 2017, 372, 180-187.	7.8	54
8	1D nanobar-like LiNi _{0.4} Co _{0.2} Mn _{0.4} O ₂ as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability. Journal of Materials Chemistry A, 2017, 5, 15669-15675.	10.3	51
9	Scaling up "Nano―Li ₄ Ti ₅ O ₁₂ for High-Power Lithium-Ion Anodes Using Large Scale Flame Spray Pyrolysis. Journal of the Electrochemical Society, 2015, 162, A2331-A2338.	2.9	32
10	Effect of coatings on the green electrode processing and cycling behaviour of LiCoPO ₄ . Journal of Materials Chemistry A, 2016, 4, 17121-17128.	10.3	31
11	Synergistic electrolyte additives for enhancing the performance of high-voltage lithium-ion cathodes in half-cells and full-cells. Journal of Power Sources, 2021, 482, 228975.	7.8	29
12	Transforming anatase TiO2 nanorods into ultrafine nanoparticles for advanced electrochemical performance. Journal of Power Sources, 2015, 294, 406-413.	7.8	11
13	Synthesis and characterization of nanoparticulate MnS within the pores of mesoporous silica. Journal of Solid State Chemistry, 2007, 180, 3443-3449.	2.9	9
14	Flame spray pyrolysis generated transition metal oxide nanoparticles as catalysts for the growth of carbon nanotubes. RSC Advances, 2013, 3, 20040.	3.6	6
15	Ex situ XAS investigation of effect of binders on electrochemical performance of Li ₂ Fe(SO ₄) ₂ cathode. Journal of Materials Chemistry A, 2017, 5, 19963-19971.	10.3	4
16	Structural, Thermal, and Electrochemical Studies of Novel Li ₂ Co _{<i>x</i>} Mn _{1–<i>x</i>} (SO ₄) ₂ Bimetallic Sulfates. Journal of Physical Chemistry C, 2017, 121, 24971-24978.	3.1	3
17	MnS doped mesoporous silica catalysts for the generation of novel carbon nanocages. Applied Catalysis A: General, 2008, 341, 8-11.	4.3	2
18	Electronic and Geometric Structures of Rechargeable Lithium Manganese Sulfate Li ₂ Mn(SO ₄) ₂ Cathode. ACS Omega, 2019, 4, 11338-11345.	3.5	2

#	Article	IF	CITATIONS
19	Hard Carbon Particle Size and Mass Loading Influence on Sodium Ion Battery Rate Performance. ECS Meeting Abstracts, 2022, MA2022-01, 67-67.	0.0	1