Mark Carrington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5475650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of sequence-specific promoters driving polycistronic transcription initiation by RNA polymerase II in trypanosomes. Cell Reports, 2022, 38, 110221.	6.4	13
2	Black-necked spitting cobra (Naja nigricollis) phospholipases A2 may cause Trypanosoma brucei death by blocking endocytosis through the flagellar pocket. Scientific Reports, 2022, 12, 6394.	3.3	3
3	A longitudinal two-year survey of the prevalence of trypanosomes in domestic cattle in Ghana by massively parallel sequencing of barcoded amplicons. PLoS Neglected Tropical Diseases, 2022, 16, e0010300.	3.0	4
4	VSG mRNA levels are regulated by the production of functional VSG protein. Molecular and Biochemical Parasitology, 2021, 241, 111348.	1.1	8
5	Sequential production of gametes during meiosis in trypanosomes. Communications Biology, 2021, 4, 555.	4.4	18
6	Transmission of â€~Candidatus Anaplasma camelii' to mice and rabbits by camel-specific keds, Hippobosca camelina. PLoS Neglected Tropical Diseases, 2021, 15, e0009671.	3.0	10
7	A receptor for the complement regulator factor H increases transmission of trypanosomes to tsetse flies. Nature Communications, 2020, 11, 1326.	12.8	23
8	Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei. ELife, 2020, 9, .	6.0	16
9	Structure of the trypanosome transferrin receptor reveals mechanisms of ligand recognition and immune evasion. Nature Microbiology, 2019, 4, 2074-2081.	13.3	20
10	A single dose of antibody-drug conjugate cures a stage 1 model of African trypanosomiasis. PLoS Neglected Tropical Diseases, 2019, 13, e0007373.	3.0	11
11	Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biology, 2019, 17, 11.	3.8	98
12	On-Site Ribosome Remodeling by Locally Synthesized Ribosomal Proteins in Axons. Cell Reports, 2019, 29, 3605-3619.e10.	6.4	103
13	A new reporter cell line for studies with proteasome inhibitors in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2019, 227, 15-18.	1.1	4
14	Detection of blood pathogens in camels and their associated ectoparasitic camel biting keds, Hippobosca camelina: the potential application of keds in xenodiagnosis of camel haemopathogens. AAS Open Research, 2019, 2, 164.	1.5	9
15	Visualizing trypanosomes in a vertebrate host reveals novel swimming behaviours, adaptations and attachment mechanisms. ELife, 2019, 8, .	6.0	25
16	The structure of serum resistance-associated protein and its implications for human African trypanosomiasis. Nature Microbiology, 2018, 3, 295-301.	13.3	21
17	Chromatin clues to the trypanosome parasite's uniform coat. Nature, 2018, 563, 40-42.	27.8	0
18	Codon choice directs constitutive mRNA levels in trypanosomes. ELife, 2018, 7, .	6.0	52

#	Article	IF	CITATIONS
19	O-h what a surprise. Nature Microbiology, 2018, 3, 856-857.	13.3	2
20	Sequencing 5â€Hydroxymethyluracil at Singleâ€Base Resolution. Angewandte Chemie, 2018, 130, 9842-9844.	2.0	3
21	Sequencing 5â€Hydroxymethyluracil at Singleâ€Base Resolution. Angewandte Chemie - International Edition, 2018, 57, 9694-9696.	13.8	18
22	Multispecies reconstructions uncover widespread conservation, and lineage-specific elaborations in eukaryotic mRNA metabolism. PLoS ONE, 2018, 13, e0192633.	2.5	20
23	Selective inhibitors of trypanosomal uridylyl transferase RET1 establish druggability of RNA post-transcriptional modifications. RNA Biology, 2017, 14, 611-619.	3.1	5
24	Transcriptome Sequence of the Bloodstream Form of <i>Trypanoplasma borreli</i> , a Hematozoic Parasite of Fish Transmitted by Leeches. Genome Announcements, 2017, 5, .	0.8	5
25	Euglena gracilis Genome and Transcriptome: Organelles, Nuclear Genome Assembly Strategies and Initial Features. Advances in Experimental Medicine and Biology, 2017, 979, 125-140.	1.6	35
26	Characterization of RBP9 and RBP10, two developmentally regulated RNA-binding proteins in Trypanosoma brucei. Open Biology, 2017, 7, 160159.	3.6	16
27	Structural basis for the shielding function of the dynamic trypanosome variant surface glycoprotein coat. Nature Microbiology, 2017, 2, 1523-1532.	13.3	48
28	Facilitating trypanosome imaging. Experimental Parasitology, 2017, 180, 13-18.	1.2	5
29	Serum biochemical parameters and cytokine profiles associated with natural African trypanosome infections in cattle. Parasites and Vectors, 2017, 10, 312.	2.5	14
30	An Alternative Strategy for Trypanosome Survival in the Mammalian Bloodstream Revealed through Genome and Transcriptome Analysis of the Ubiquitous Bovine Parasite Trypanosoma (Megatrypanum) theileri. Genome Biology and Evolution, 2017, 9, 2093-2109.	2.5	29
31	A Receptor's Tale: An Eon in the Life of a Trypanosome Receptor. PLoS Pathogens, 2017, 13, e1006055.	4.7	27
32	Evaluation of Antigens for Development of a Serological Test for Human African Trypanosomiasis. PLoS ONE, 2016, 11, e0168074.	2.5	12
33	Unique and Conserved Features of the Protein Synthesis Apparatus in Parasitic Trypanosomatid (Trypanosoma and Leishmania) Species. , 2016, , 435-475.		4
34	Phosphorylation of elF2α on Threonine 169 is not required for Trypanosoma brucei cell cycle arrest during differentiation. Molecular and Biochemical Parasitology, 2016, 205, 16-21.	1.1	8
35	Polycistronic trypanosome mRNAs are a target for the exosome. Molecular and Biochemical Parasitology, 2016, 205, 1-5.	1.1	22
36	Evolutionary diversification of the trypanosome haptoglobin-haemoglobin receptor from an an ancestral haemoglobin receptor. ELife, 2016, 5, .	6.0	28

#	Article	IF	CITATIONS
37	Localization of serum resistance-associated protein in <i>Trypanosoma brucei rhodesiense</i> and transgenic <i>Trypanosoma brucei brucei</i> . Cellular Microbiology, 2015, 17, 1523-1535.	2.1	13
38	How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins?. PLoS Pathogens, 2015, 11, e1005259.	4.7	58
39	High throughput sequencing analysis of Trypanosoma brucei DRBD3/PTB1-bound mRNAs. Molecular and Biochemical Parasitology, 2015, 199, 1-4.	1.1	27
40	Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation. RNA Biology, 2015, 12, 305-319.	3.1	30
41	Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve. Nucleic Acids Research, 2015, 43, 8013-8032.	14.5	74
42	Depletion of the RNA-Binding Protein RBP33 Results in Increased Expression of Silenced RNA Polymerase II Transcripts in Trypanosoma brucei. PLoS ONE, 2014, 9, e107608.	2.5	13
43	An AU-rich instability element in the 3′UTR mediates an increase in mRNA stability in response to expression of a dhh1 ATPase mutant. Translation, 2014, 2, e28587.	2.9	1
44	Evolution of the primate trypanolytic factor APOL1. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2130-9.	7.1	183
45	A short RNA stem-loop is necessary and sufficient for repression of gene expression during early logarithmic phase in trypanosomes. Nucleic Acids Research, 2014, 42, 7201-7209.	14.5	24
46	Sequence variation and structural conservation allows development of novel function and immune evasion in parasite surface protein families. Protein Science, 2014, 23, 354-365.	7.6	36
47	SLaP mapper: A webserver for identifying and quantifying spliced-leader addition and polyadenylation site usage in kinetoplastid genomes. Molecular and Biochemical Parasitology, 2014, 196, 71-74.	1.1	15
48	Meiosis and Haploid Gametes in the Pathogen Trypanosoma brucei. Current Biology, 2014, 24, 181-186.	3.9	127
49	Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor. ELife, 2014, 3, e05553.	6.0	49
50	Proteomic Selection of Immunodiagnostic Antigens for Human African Trypanosomiasis and Generation of a Prototype Lateral Flow Immunodiagnostic Device. PLoS Neglected Tropical Diseases, 2013, 7, e2087.	3.0	58
51	Determinants of GPI-PLC Localisation to the Flagellum and Access to GPI-Anchored Substrates in Trypanosomes. PLoS Pathogens, 2013, 9, e1003566.	4.7	17
52	Structure of the trypanosome haptoglobin–hemoglobin receptor and implications for nutrient uptake and innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1905-1910.	7.1	81
53	Yeast-based automated high-throughput screens to identify anti-parasitic lead compounds. Open Biology, 2013, 3, 120158.	3.6	32
54	Differential Localization of the Two T. brucei Poly(A) Binding Proteins to the Nucleus and RNP Granules Suggests Binding to Distinct mRNA Pools. PLoS ONE, 2013, 8, e54004.	2.5	45

#	Article	IF	CITATIONS
55	GeneDBan annotation database for pathogens. Nucleic Acids Research, 2012, 40, D98-D108.	14.5	217
56	Inhibition of mRNA maturation in trypanosomes causes the formation of novel foci at the nuclear periphery containing cytoplasmic regulators of mRNA fate. Journal of Cell Science, 2012, 125, 2896-909.	2.0	34
57	The Ontology for Parasite Lifecycle (OPL): towards a consistent vocabulary of lifecycle stages in parasitic organisms. Journal of Biomedical Semantics, 2012, 3, 5.	1.6	4
58	How do trypanosomes change gene expression in response to the environment?. Protoplasma, 2012, 249, 223-238.	2.1	29
59	A role for the vesicle-associated tubulin binding protein ARL6 (BBS3) in flagellum extension in Trypanosoma brucei. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1178-1191.	4.1	22
60	The Orthologue of Sjögren's Syndrome Nuclear Autoantigen 1 (SSNA1) in Trypanosoma brucei Is an Immunogenic Self-Assembling Molecule. PLoS ONE, 2012, 7, e31842.	2.5	13
61	A New Generation of T7 RNA Polymerase-Independent Inducible Expression Plasmids for Trypanosoma brucei. PLoS ONE, 2012, 7, e35167.	2.5	26
62	Alterations in DRBD3 Ribonucleoprotein Complexes in Response to Stress in Trypanosoma brucei. PLoS ONE, 2012, 7, e48870.	2.5	40
63	Is There a Classical Nonsense-Mediated Decay Pathway in Trypanosomes?. PLoS ONE, 2011, 6, e25112.	2.5	52
64	Ubiquitylation and Developmental Regulation of Invariant Surface Protein Expression in Trypanosomes. Eukaryotic Cell, 2011, 10, 916-931.	3.4	48
65	The VSG C-terminal domain is inaccessible to antibodies on live trypanosomes. Molecular and Biochemical Parasitology, 2011, 175, 201-204.	1.1	60
66	The four trypanosomatid elF4E homologues fall into two separate groups, with distinct features in primary sequence and biological properties. Molecular and Biochemical Parasitology, 2011, 176, 25-36.	1.1	68
67	Trans-acting proteins regulating mRNA maturation, stability and translation in trypanosomatids. Trends in Parasitology, 2011, 27, 23-30.	3.3	96
68	Identification of the meiotic life cycle stage of <i>Trypanosoma brucei</i> in the tsetse fly. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3671-3676.	7.1	125
69	Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. BMC Genomics, 2010, 11, 283.	2.8	78
70	Chaperone Requirements for Biosynthesis of the Trypanosome Variant Surface Glycoprotein. PLoS ONE, 2010, 5, e8468.	2.5	36
71	Functional Characterization of Three Leishmania Poly(A) Binding Protein Homologues with Distinct Binding Properties to RNA and Protein Partners. Eukaryotic Cell, 2010, 9, 1484-1494.	3.4	47
72	The RNA helicase DHH1 is central to the correct expression of many developmentally regulated mRNAs in trypanosomes. Journal of Cell Science, 2010, 123, 699-711.	2.0	58

#	Article	IF	CITATIONS
73	TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Research, 2010, 38, D457-D462.	14.5	847
74	Bloodstream form trypanosome plasma membrane proteins: antigenic variation and invariant antigens. Parasitology, 2010, 137, 2029-2039.	1.5	52
75	The Glycosylphosphatidylinositol-PLC in Trypanosoma brucei Forms a Linear Array on the Exterior of the Flagellar Membrane Before and After Activation. PLoS Pathogens, 2009, 5, e1000468.	4.7	24
76	Murine Models for Trypanosoma brucei gambiense Disease Progression—From Silent to Chronic Infections and Early Brain Tropism. PLoS Neglected Tropical Diseases, 2009, 3, e509.	3.0	62
77	Hydrodynamic gene delivery of baboon trypanosome lytic factor eliminates both animal and human-infective African trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19509-19514.	7.1	58
78	The heart of darkness: growth and form of Trypanosoma brucei in the tsetse fly. Trends in Parasitology, 2009, 25, 517-524.	3.3	102
79	The trypanosome flagellar pocket. Nature Reviews Microbiology, 2009, 7, 775-786.	28.6	230
80	Blocking Variant Surface Glycoprotein Synthesis in Trypanosoma brucei Triggers a General Arrest in Translation Initiation. PLoS ONE, 2009, 4, e7532.	2.5	40
81	Slippery customers: How African trypanosomes evade mammalian defences. Biochemist, 2009, 31, 8-11.	0.5	1
82	Ubiquitylation is Required for Degradation of Transmembrane Surface Proteins in Trypanosomes. Traffic, 2008, 9, 1681-1697.	2.7	55
83	Functional characterization of cohesin subunit SCC1 in <i>Trypanosoma brucei</i> and dissection of mutant phenotypes in two life cycle stages. Molecular Microbiology, 2008, 69, 666-680.	2.5	37
84	A multiplex PCR that discriminates between Trypanosoma brucei brucei and zoonotic T. b. rhodesiense. Experimental Parasitology, 2008, 118, 41-46.	1.2	63
85	Asymmetric Cell Division as a Route to Reduction in Cell Length and Change in Cell Morphology in Trypanosomes. Protist, 2008, 159, 137-151.	1.5	124
86	A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Research, 2008, 36, 3374-3388.	14.5	108
87	Structure of a Glycosylphosphatidylinositol-anchored Domain from a Trypanosome Variant Surface Glycoprotein. Journal of Biological Chemistry, 2008, 283, 3584-3593.	3.4	29
88	Analysis of Small GTPase Function in Trypanosomes. Methods in Enzymology, 2008, 438, 57-76.	1.0	5
89	Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF21 [±] phosphorylation at Thr169. Journal of Cell Science, 2008, 121, 3002-3014.	2.0	149
90	Small Trypanosome RNA-Binding Proteins <i>Tb</i> UBP1 and <i>Tb</i> UBP2 Influence Expression of F-Box Protein mRNAs in Bloodstream Trypanosomes. Eukaryotic Cell, 2007, 6, 1964-1978.	3.4	41

#	Article	IF	CITATIONS
91	VSGdb: a database for trypanosome variant surface glycoproteins, a large and diverse family of coiled coil proteins. BMC Bioinformatics, 2007, 8, 143.	2.6	23
92	Variant Surface Glycoprotein gene repertoires in Trypanosoma brucei have diverged to become strain-specific. BMC Genomics, 2007, 8, 234.	2.8	44
93	Functional genomics in Trypanosoma brucei: A collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Molecular and Biochemical Parasitology, 2007, 154, 103-109.	1.1	189
94	The two eIF4A helicases in Trypanosoma brucei are functionally distinct. Nucleic Acids Research, 2006, 34, 2495-2507.	14.5	58
95	Chromosome-Wide Analysis of Gene Function by RNA Interference in the African Trypanosome. Eukaryotic Cell, 2006, 5, 1539-1549.	3.4	77
96	Structure of the C-terminal Domain from Trypanosoma brucei Variant Surface Glycoprotein MITat1.2. Journal of Biological Chemistry, 2005, 280, 7228-7235.	3.4	42
97	A novel strategy to identify the location of necessary and sufficient cis-acting regulatory mRNA elements in trypanosomes. Rna, 2005, 11, 1108-1116.	3.5	14
98	Sleeping sickness in Uganda: a thin line between two fatal diseases. BMJ: British Medical Journal, 2005, 331, 1238-1241.	2.3	160
99	Developmentally regulated instability of the GPI-PLC mRNA is dependent on a short-lived protein factor. Nucleic Acids Research, 2005, 33, 1503-1512.	14.5	41
100	The Genome Sequence of <i>Trypanosoma cruzi</i> , Etiologic Agent of Chagas Disease. Science, 2005, 309, 409-415.	12.6	1,273
101	The Genome of the African Trypanosome Trypanosoma brucei. Science, 2005, 309, 416-422.	12.6	1,496
102	The Cyclin A1-CDK2 Complex Regulates DNA Double-Strand Break Repair. Molecular and Cellular Biology, 2004, 24, 8917-8928.	2.3	106
103	Cyclin A1 protein shows haplo-insufficiency for normal fertility in male mice. Reproduction, 2004, 127, 503-511.	2.6	32
104	Cytoplasmic Targeting Signals in Transmembrane Invariant Surface Glycoproteins of Trypanosomes. Journal of Biological Chemistry, 2004, 279, 54887-54895.	3.4	43
105	Intracellular Membrane Transport Systems in Trypanosoma brucei. Traffic, 2004, 5, 905-913.	2.7	62
106	Candidate protein selection for diagnostic markers of African trypanosomiasis. Trends in Parasitology, 2004, 20, 519-523.	3.3	20
107	The origin of the serum resistance associated (SRA) gene and a model of the structure of the SRA polypeptide from Trypanosoma brucei rhodesiense. Molecular and Biochemical Parasitology, 2003, 127, 79-84.	1.1	47
108	VSG structure: similar N-terminal domains can form functional VSGs with different types of C-terminal domain. Molecular and Biochemical Parasitology, 2003, 130, 127-131.	1.1	23

#	Article	IF	CITATIONS
109	The appearance of truncated cyclin A2 correlates with differentiation of mouse embryonic stem cells. Biochemical and Biophysical Research Communications, 2003, 302, 825-830.	2.1	8
110	Whole-genome analysis of animal A- and B-type cyclins. Genome Biology, 2002, 3, research0070.1.	9.6	41
111	The kinetoplastida endocytic apparatus. Part I: a dynamic system for nutrition and evasion of host defences. Trends in Parasitology, 2002, 18, 491-496.	3.3	73
112	The endocytic apparatus of the kinetoplastida. Part II: machinery and components of the system. Trends in Parasitology, 2002, 18, 540-546.	3.3	64
113	The coatomer of Trypanosoma brucei. Molecular and Biochemical Parasitology, 2001, 115, 55-61.	1.1	21
114	The Long Form of CDK2 Arises via Alternative Splicing and Forms an Active Protein Kinase with Cyclins A and E. DNA and Cell Biology, 2001, 20, 413-423.	1.9	18
115	Seventh heaven?. Journal of Cell Science, 2001, 114, 3217-3217.	2.0	1
116	Structure and metabolism of the VSG monolayer. Biochemical Society Transactions, 2000, 28, A477-A477.	3.4	0
117	ESAG11, a new VSG expression site-associated gene from Trypanosoma brucei. Molecular and Biochemical Parasitology, 2000, 111, 223-228.	1.1	10
118	Attenuation ofTrypanosoma bruceils Associated with Reduced Immunosuppression and Concomitant Production of Th2 Lymphokines. Journal of Infectious Diseases, 2000, 181, 1110-1120.	4.0	57
119	A Role for the Dynamic Acylation of a Cluster of Cysteine Residues in Regulating the Activity of the Glycosylphosphatidylinositol-specific Phospholipase C ofTrypanosoma brucei. Journal of Biological Chemistry, 2000, 275, 12147-12155.	3.4	11
120	Early Development of Mouse Embryos Null Mutant for the Cyclin A2 Gene Occurs in the Absence of Maternally Derived Cyclin A2 Gene Products. Developmental Biology, 2000, 223, 139-153.	2.0	49
121	Conservation of genetic linkage between heat shock protein 100 and glycosylphosphatidylinositol-specific phospholipase C in Trypanosoma brucei and Trypanosoma cruzi1Note: Nucleotide sequence data reported in this paper are available in the EMBL, GenBank and DDJB databases under the accession numbers: AJ 000080, Trypanosoma brucei hsp100 and gpi-plc	1.1	10
122	The GPI-Phospholipase C of Trypanosoma brucei Is Nonessential But Influences Parasitemia in Mice. Journal of Cell Biology, 1997, 139, 103-114.	5.2	93
123	Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nature Genetics, 1997, 15, 83-86.	21.4	251
124	Polymerase chain reaction-based gene disruption in Trypanosoma brucei. Molecular and Biochemical Parasitology, 1997, 87, 113-115.	1.1	21
125	Mutagenesis study of the glycosylphosphatidylinositol phospholipase C of Trypanosoma brucei. Molecular and Biochemical Parasitology, 1997, 90, 423-432.	1.1	16
126	Implications of conserved structural motifs in disparate trypanosome surface proteins. Molecular and Biochemical Parasitology, 1996, 81, 119-126.	1.1	72

#	Article	IF	CITATIONS
127	The isolation and characterization of genomic and cDNA clones coding for a cdc2-related kinase (ThCRK2) from the bovine protozoan parasiteTheileria. Molecular Microbiology, 1996, 22, 293-302.	2.5	15
128	Simultaneous but Independent Activation of Adenylate Cyclase and Glycosylphosphatidylinositol-Phospholipase C under Stress Conditions in Trypanosoma brucei. Journal of Biological Chemistry, 1996, 271, 10844-10852.	3.4	57
129	Identification of the C-terminal region of 70 kDa heat shock protein from Leishmania (Viannia) braziliensis as a target for the humoral immune response. Cell Stress and Chaperones, 1996, 1, 177.	2.9	25
130	Polymorphism of SPAG-1, a candidate antigen for inclusion in a sub-unit vaccine against Theileria annulata. Molecular and Biochemical Parasitology, 1994, 67, 1-10.	1.1	51
131	A structural motif in the variant surface glycoproteins of Trypanosoma brucei. Nature, 1993, 362, 603-609.	27.8	215
132	Characterisation of a glutamine- and proline-rich protein (QP protein) from Theileria parva. Molecular and Biochemical Parasitology, 1993, 61, 171-178.	1.1	26
133	Culturing and Biological Cloning of Trypanosoma brucei. , 1993, 21, 1-14.		3
134	Mimicry of elastin repetitive motifs by Theileria annulata sporozoite surface antigen. Molecular and Biochemical Parasitology, 1992, 53, 105-112.	1.1	26
135	THE BIOLOGY OF THE GLYCOSYLPHOSPHATIDYLINOSITOL-SPECIFIC PHOSPHOLIPASE C OF TRYPANOSOMA BRUCEI. , 1992, , 246-259.		1
136	Variant specific glycoprotein of Trypanosoma brucei consists of two domains each having an independently conserved pattern of cysteine residues. Journal of Molecular Biology, 1991, 221, 823-835.	4.2	125
137	An unusual repetitive gene family inTheileria parva which is stage-specifically transcribed. Molecular and Biochemical Parasitology, 1991, 49, 133-142.	1.1	29
138	2·9 à resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei. Journal of Molecular Biology, 1990, 216, 141-160.	4.2	106
139	Sequence and expression of the glycosyl-phosphatidylinositol-specific phospholipase C of Trypanosoma brucei. Molecular and Biochemical Parasitology, 1989, 33, 289-296.	1.1	60
140	Improved characterization of Theileria parva isolates using the polymerase chain reaction and oligonucleotide probes. Molecular and Biochemical Parasitology, 1989, 35, 137-147.	1.1	42
141	The structure and transcription of an element interspersed between tandem arrays of mini-exon donor RNA genes inTrypanosoma brucei. Nucleic Acids Research, 1987, 15, 10179-10198.	14.5	37
142	Expression of a polypeptide containing a dipeptide repeat is confined to the insect stage of Trypanosoma brucei. Nature, 1987, 325, 272-274.	27.8	211
143	Identification of the Elusive Core Promoters Driving Polycistronic Transcription by RNA Polymerase II in Trypanosomes. SSRN Electronic Journal, 0, , .	0.4	0