Jiming Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5475598/publications.pdf

Version: 2024-02-01

246	32,035	79 h-index	169
papers	citations		g-index
353	353	353	19518
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Molecular Plant, 2022, 15, 520-536.	3.9	72
2	Updates on gene editing and its applications. Plant Physiology, 2022, 188, 1725-1730.	2.3	15
3	Chromosomeâ€specific painting unveils chromosomal fusions and distinct allopolyploid species in the <i>Saccharum</i> complex. New Phytologist, 2022, 233, 1953-1965.	3.5	19
4	Preferential meiotic chromosome pairing among homologous chromosomes with cryptic sequence variation in tetraploid maize. New Phytologist, 2021, 229, 3294-3302.	3. 5	19
5	Efficient Genome Editing in Potato Using a Hairy Root Transformation System. Springer Protocols, 2021, , 149-158.	0.1	O
6	Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature, 2021, 590, 438-444.	13.7	144
7	Enhancerâ€mediated reporter gene expression in <i>Arabidopsis thaliana</i> : a forward genetic screen. Plant Journal, 2021, 106, 661-671.	2.8	4
8	Genomic editing of intronic enhancers unveils their role in fine-tuning tissue-specific gene expression in <i>Arabidopsis thaliana</i> . Plant Cell, 2021, 33, 1997-2014.	3.1	43
9	The <i>Mitragyna speciosa</i> (Kratom) Genome: a resource for data-mining potent pharmaceuticals that impact human health. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	19
10	BAC- and oligo-FISH mapping reveals chromosome evolution among Vigna angularis, V. unguiculata, and Phaseolus vulgaris. Chromosoma, 2021, 130, 133-147.	1.0	17
11	Chorus2: design of genomeâ€scale oligonucleotideâ€based probes for fluorescence <i>inÂsitu</i> hybridization. Plant Biotechnology Journal, 2021, 19, 1967-1978.	4.1	31
12	Oligo-FISH barcode in beans: a new chromosome identification system. Theoretical and Applied Genetics, 2021, 134, 3675-3686.	1.8	23
13	Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biology, 2021, 22, 237.	3.8	21
14	LD-CNV: rapid and simple discovery of chromosomal translocations using linkage disequilibrium between copy number variable loci. Genetics, 2021, 219, .	1.2	5
15	Rapid Validation of Transcriptional Enhancers Using a Transient Reporter Assay. Methods in Molecular Biology, 2021, 2328, 253-259.	0.4	0
16	Sucrose promotes stem branching through cytokinin. Plant Physiology, 2021, 185, 1708-1721.	2.3	54
17	Dualâ€color oligoâ€FISH can reveal chromosomal variations and evolution in <i>Oryza</i> species. Plant Journal, 2020, 101, 112-121.	2.8	44
18	An extraordinarily stable karyotype of the woody <i>Populus</i> species revealed by chromosome painting. Plant Journal, 2020, 101, 253-264.	2.8	46

#	Article	IF	CITATIONS
19	Overexpression of a modified eIF4E regulates potato virus Y resistance at the transcriptional level in potato. BMC Genomics, 2020, 21, 18.	1.2	17
20	Construction of a chromosome-scale long-read reference genome assembly for potato. GigaScience, 2020, 9, .	3.3	150
21	Generation of a chromosome-scale genome assembly of the insect-repellent terpenoid-producing Lamiaceae species, Callicarpa americana. GigaScience, 2020, 9, .	3.3	21
22	A universal chromosome identification system for maize and wild Zea species. Chromosome Research, 2020, 28, 183-194.	1.0	26
23	Firstâ€generation genome editing in potato using hairy root transformation. Plant Biotechnology Journal, 2020, 18, 2201-2209.	4.1	38
24	Extraordinarily conserved chromosomal synteny of <i>Citrus</i> species revealed by chromosomeâ€specific painting. Plant Journal, 2020, 103, 2225-2235.	2.8	33
25	Genome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in Arabidopsis thaliana. Genome Biology, 2020, 21, 24.	3.8	35
26	Fluorescent In Situ Hybridization Using Oligonucleotide-Based Probes. Methods in Molecular Biology, 2020, 2148, 71-83.	0.4	20
27	Meiotic crossovers characterized by haplotype-specific chromosome painting in maize. Nature Communications, 2019, 10, 4604.	5.8	40
28	Local Changes in Chromatin Accessibility and Transcriptional Networks Underlying the Nitrate Response in Arabidopsis Roots. Molecular Plant, 2019, 12, 1545-1560.	3.9	31
29	Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1679-1685.	3.3	95
30	Historical Meiotic Crossover Hotspots Fueled Patterns of Evolutionary Divergence in Rice. Plant Cell, 2019, 31, 645-662.	3.1	41
31	Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato. Genome Biology, 2019, 20, 123.	3.8	119
32	Genomeâ€wide Inference of Somatic Translocation Events During Potato Dihaploid Production. Plant Genome, 2019, 12, 180079.	1.6	8
33	Residual Heterozygosity and Epistatic Interactions Underlie the Complex Genetic Architecture of Yield in Diploid Potato. Genetics, 2019, 212, 317-332.	1.2	20
34	Rapid validation of transcriptional enhancers using agrobacterium-mediated transient assay. Plant Methods, 2019, 15, 21.	1.9	13
35	Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Research, 2019, 27, 153-165.	1.0	142
36	Proliferation of Regulatory DNA Elements Derived from Transposable Elements in the Maize Genome. Plant Physiology, 2018, 176, 2789-2803.	2.3	71

#	Article	IF	CITATIONS
37	Chromosome painting and comparative physical mapping of the sex chromosomes in Populus tomentosa and Populus deltoides. Chromosoma, 2018, 127, 313-321.	1.0	43
38	Amplification and adaptation of centromeric repeats in polyploid switchgrass species. New Phytologist, 2018, 218, 1645-1657.	3.5	30
39	Genome sequence of M6, a diploid inbred clone of the highâ€glycoalkaloidâ€producing tuberâ€bearing potato species <i>Solanum chacoense</i> , reveals residual heterozygosity. Plant Journal, 2018, 94, 562-570.	2.8	112
40	The unique epigenetic features of Pack-MULEs and their impact on chromosomal base composition and expression spectrum. Nucleic Acids Research, 2018, 46, 2380-2397.	6.5	14
41	Transcriptional and epigenetic adaptation of maize chromosomes in Oat-Maize addition lines. Nucleic Acids Research, 2018, 46, 5012-5028.	6.5	19
42	Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed <i>Amaranthus palmeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3332-3337.	3.3	159
43	Single molecule mtDNA fiber FISH for analyzing numtogenesis. Analytical Biochemistry, 2018, 552, 45-49.	1.1	10
44	Comparative Oligo-FISH Mapping: An Efficient and Powerful Methodology To Reveal Karyotypic and Chromosomal Evolution. Genetics, 2018, 208, 513-523.	1.2	146
45	Genome Reduction in Tetraploid Potato Reveals Genetic Load, Haplotype Variation, and Loci Associated With Agronomic Traits. Frontiers in Plant Science, 2018, 9, 944.	1.7	30
46	Genomics of Maize Centromeres. Compendium of Plant Genomes, 2018, , 59-80.	0.3	2
47	Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species. Chromosoma, 2018, 127, 505-513.	1.0	57
48	Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nature Communications, 2018, 9, 4580.	5.8	181
49	Constitutively Expressed RB Gene Confers a High Level but Unregulated Resistance to Potato Late Blight. American Journal of Potato Research, 2018, 95, 575-583.	0.5	2
50	Comparison of <i>Oryza sativa</i> and <i>Oryza brachyantha</i> Genomes Reveals Selection-Driven Gene Escape from the Centromeric Regions. Plant Cell, 2018, 30, 1729-1744.	3.1	22
51	Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biology, 2018, 18, 110.	1.6	48
52	Application of MNase-Seq in the Global Mapping of Nucleosome Positioning in Plants. Methods in Molecular Biology, 2018, 1830, 353-366.	0.4	6
53	Towards genome-wide prediction and characterization of enhancers in plants. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 131-139.	0.9	53
54	Analysis of Ribosome-Associated mRNAs in Rice Reveals the Importance of Transcript Size and GC Content in Translation. G3: Genes, Genomes, Genetics, 2017, 7, 203-219.	0.8	43

#	Article	IF	Citations
55	Overexpression of StNF-YB3.1 reduces photosynthetic capacity and tuber production, and promotes ABA-mediated stomatal closure in potato (Solanum tuberosum L.). Plant Science, 2017, 261, 50-59.	1.7	21
56	Recurrent establishment of de novo centromeres in the pericentromeric region of maize chromosome 3. Chromosome Research, 2017, 25, 299-311.	1.0	17
57	Etiolated Stem Branching Is a Result of Systemic Signaling Associated with Sucrose Level. Plant Physiology, 2017, 175, 734-745.	2.3	24
58	Genome-wide mapping of DNase I hypersensitive sites reveals chromatin accessibility changes in Arabidopsis euchromatin and heterochromatin regions under extended darkness. Scientific Reports, 2017, 7, 4093.	1.6	19
59	Meiotic crossovers are associated with open chromatin and enriched with Stowaway transposons in potato. Genome Biology, 2017, 18, 203.	3.8	62
60	Genomic abundance is not predictive of tandem repeat localization in grass genomes. PLoS ONE, 2017, 12, e0177896.	1.1	5
61	Reinventing Potato as a Diploid Inbred Line–Based Crop. Crop Science, 2016, 56, 1412-1422.	0.8	176
62	Isolation and Proteomics Analysis of Barley Centromeric Chromatin Using PICh. Journal of Proteome Research, 2016, 15, 1875-1882.	1.8	7
63	Chromatin-associated transcripts of tandemly repetitive DNA sequences revealed by RNA-FISH. Chromosome Research, 2016, 24, 467-480.	1.0	29
64	Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products. Plant Biotechnology Journal, 2016, 14, 709-718.	4.1	50
65	Genome Reduction Uncovers a Large Dispensable Genome and Adaptive Role for Copy Number Variation in Asexually Propagated <i>Solanum tuberosum</i>). Plant Cell, 2016, 28, 388-405.	3.1	163
66	A Mutant elF4E Confers Resistance to Potato Virus Y Strains and is Inherited in a Dominant Manner in the Potato Varieties Atlantic and Russet Norkotah. American Journal of Potato Research, 2016, 93, 64-71.	0.5	11
67	High-resolution tyramide-FISH mapping of markers tightly linked to the male-fertility restoration (Ms) locus of onion. Theoretical and Applied Genetics, 2016, 129, 535-545.	1.8	21
68	Gene Expression and Chromatin Modifications Associated with Maize Centromeres. G3: Genes, Genomes, Genetics, 2016, 6, 183-192.	0.8	30
69	PlantDHS: a database for DNase I hypersensitive sites in plants. Nucleic Acids Research, 2016, 44, D1148-D1153.	6.5	86
70	Transposons play an important role in the evolution and diversification of centromeres among closely related species. Frontiers in Plant Science, 2015, 6, 216.	1.7	51
71	Stable Patterns of CENH3 Occupancy Through Maize Lineages Containing Genetically Similar Centromeres. Genetics, 2015, 200, 1105-1116.	1.2	20
72	Genome-Wide Nucleosome Occupancy and Positioning and Their Impact on Gene Expression and Evolution in Plants. Plant Physiology, 2015, 168, 1406-1416.	2.3	98

#	Article	IF	CITATIONS
73	The †dark matter†in the plant genomes: non-coding and unannotated DNA sequences associated with open chromatin. Current Opinion in Plant Biology, 2015, 24, 17-23.	3.5	49
74	Chromosome-Specific Painting in <i>Cucumis</i> Species Using Bulked Oligonucleotides. Genetics, 2015, 200, 771-779.	1.2	192
75	Evidence for Emergence of Sex-Determining Gene(s) in a Centromeric Region in <i>Vasconcellea parviflora</i> . Genetics, 2015, 199, 413-421.	1.2	23
76	Genome-Wide Prediction and Validation of Intergenic Enhancers in Arabidopsis Using Open Chromatin Signatures. Plant Cell, 2015, 27, 2415-2426.	3.1	136
77	Cytogenetic and Sequence Analyses of Mitochondrial DNA Insertions in Nuclear Chromosomes of Maize. G3: Genes, Genomes, Genetics, 2015, 5, 2229-2239.	0.8	16
78	Genome-Wide Mapping of DNase I Hypersensitive Sites in Plants. Methods in Molecular Biology, 2015, 1284, 71-89.	0.4	34
79	Open Chromatin in Plant Genomes. Cytogenetic and Genome Research, 2014, 143, 18-27.	0.6	19
80	Genome-Wide Nucleosome Positioning Is Orchestrated by Genomic Regions Associated with DNase I Hypersensitivity in Rice. PLoS Genetics, 2014, 10, e1004378.	1.5	33
81	Distinct Copy Number, Coding Sequence, and Locus Methylation Patterns Underlie Rhg1-Mediated Soybean Resistance to Soybean Cyst Nematode Â. Plant Physiology, 2014, 165, 630-647.	2.3	136
82	Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Research, 2014, 24, 107-116.	2.4	77
83	Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin. BMC Research Notes, 2014, 7, 801.	0.6	45
84	Molecular Cytogenetics of Papaya. , 2014, , 157-167.		2
85	Nextâ€generation sequencing, <scp>FISH</scp> mapping and syntenyâ€based modeling reveal mechanisms of decreasing dysploidy in <i><scp>C</scp>ucumis</i> !>. Plant Journal, 2014, 77, 16-30.	2.8	90
86	Three Potato Centromeres Are Associated with Distinct Haplotypes with or Without Megabase-Sized Satellite Repeat Arrays. Genetics, 2014, 196, 397-401.	1.2	25
87	Boom-Bust Turnovers of Megabase-Sized Centromeric DNA in <i>Solanum</i> Species: Rapid Evolution of DNA Sequences Associated with Centromeres Â. Plant Cell, 2014, 26, 1436-1447.	3.1	73
88	Vacuolar Invertase Gene Silencing in Potato (Solanum tuberosum L.) Improves Processing Quality by Decreasing the Frequency of Sugar-End Defects. PLoS ONE, 2014, 9, e93381.	1.1	40
89	Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nature Communications, 2013, 4, 1595.	5.8	190
90	Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species. Chromosome Research, 2013, 21, 5-13.	1.0	50

#	Article	IF	CITATIONS
91	Fluorescence in Situ Hybridization Techniques for Cytogenetic and Genomic Analyses. Methods in Molecular Biology, 2013, 956, 13-27.	0.4	5
92	Copy number variation in potato – an asexually propagated autotetraploid species. Plant Journal, 2013, 75, 80-89.	2.8	39
93	Keep Up with Critical Fields. , 2013, , 211-211.		0
94	Insertional Mutagenesis Using <i>Tnt1</i> Retrotransposon in Potato. Plant Physiology, 2013, 163, 21-29.	2.3	30
95	Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3447-3452.	3.3	180
96	The <i>CentO</i> satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4875-83.	3.3	80
97	High-resolution mapping of open chromatin in the rice genome. Genome Research, 2012, 22, 151-162.	2.4	205
98	Strong epigenetic similarity between maize centromeric and pericentromeric regions at the level of small RNAs, DNA methylation and H3 chromatin modifications. Nucleic Acids Research, 2012, 40, 1550-1560.	6.5	45
99	Genome-Wide Identification of Regulatory DNA Elements and Protein-Binding Footprints Using Signatures of Open Chromatin in <i>Arabidopsis</i> Plant Cell, 2012, 24, 2719-2731.	3.1	204
100	Sequencing papaya X and Y ^h chromosomes reveals molecular basis of incipient sex chromosome evolution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13710-13715.	3.3	264
101	Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution Â. Plant Cell, 2012, 24, 3559-3574.	3.1	221
102	Copy Number Variation of Multiple Genes at $\langle i \rangle Rhg1 \langle i \rangle$ Mediates Nematode Resistance in Soybean. Science, 2012, 338, 1206-1209.	6.0	535
103	Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genomics, 2012, 13, 176.	1.2	39
104	Genomic in situ hybridization reveals both auto- and allopolyploid origins of different North and Central American hexaploid potato (<i>Solanum</i> sect. <i>Petota</i>) species. Genome, 2012, 55, 407-415.	0.9	32
105	Centromeres: Sequences, Structure, and Biology. , 2012, , 59-70.		5
106	DNA and Chromatin Fiber-Based Plant Cytogenetics. , 2012, , 121-130.		1
107	Genome of papaya, a fast growing tropical fruit tree. Tree Genetics and Genomes, 2012, 8, 445-462.	0.6	21
108	Stable integration of an engineered megabase repeat array into the maize genome. Plant Journal, 2012, 70, 357-365.	2.8	17

#	Article	IF	Citations
109	Chromosome rearrangements during domestication of cucumber as revealed by highâ€density genetic mapping and draft genome assembly. Plant Journal, 2012, 71, 895-906.	2.8	177
110	Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475, 189-195.	13.7	1,912
111	Organization and Evolution of Subtelomeric Satellite Repeats in the Potato Genome. G3: Genes, Genomes, Genetics, 2011, 1, 85-92.	0.8	75
112	Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome Research, 2011, 19, 493-506.	1.0	42
113	Molecular and Cytological Characterization of Centromeric Retrotransposons in a Wild Relative of Rice, Oryza granulata. Tropical Plant Biology, 2011, 4, 217-227.	1.0	1
114	De novo assembly of potential linear artificial chromosome constructs capped with expansive telomeric repeats. Plant Methods, 2011, 7, 10.	1.9	4
115	Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. Genome Research, 2011, 21, 908-914.	2.4	65
116	Conservation and Purifying Selection of Transcribed Genes Located in a Rice Centromere. Plant Cell, 2011, 23, 2821-2830.	3.1	22
117	Euchromatic Subdomains in Rice Centromeres Are Associated with Genes and Transcription. Plant Cell, 2011, 23, 4054-4064.	3.1	51
118	Developing Coldâ€Chipping Potato Varieties by Silencing the Vacuolar Invertase Gene. Crop Science, 2011, 51, 981-990.	0.8	38
119	Super-Stretched Pachytene Chromosomes for Plant Molecular Cytogenetic Mapping. Methods in Molecular Biology, 2011, 701, 239-245.	0.4	1
120	Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma, 2010, 119, 435-442.	1.0	58
121	Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma, 2010, 119, 553-563.	1.0	58
122	Integration of Genetic and Cytological Maps and Development of a Pachytene Chromosome-based Karyotype in Papaya. Tropical Plant Biology, 2010, 3, 166-170.	1.0	34
123	Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice. Plant Journal, 2010, 63, 353-365.	2.8	112
124	Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data. Bioinformatics, 2010, 26, 2101-2108.	1.8	43
125	Gene amplification confers glyphosate resistance in <i>Amaranthus palmeri</i> National Academy of Sciences of the United States of America, 2010, 107, 1029-1034.	3.3	557
126	Suppression of the Vacuolar Invertase Gene Prevents Cold-Induced Sweetening in Potato Â. Plant Physiology, 2010, 154, 939-948.	2.3	165

#	Article	IF	Citations
127	Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: New functional implications for MITEs. Genome Research, 2009, 19, 42-56.	2.4	152
128	Agrobacterium-Mediated Transient Gene Expression and Silencing: A Rapid Tool for Functional Gene Assay in Potato. PLoS ONE, 2009, 4, e5812.	1.1	111
129	Centromere repositioning in cucurbit species: Implication of the genomic impact from centromere activation and inactivation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14937-14941.	3.3	90
130	Structure and Evolution of Plant Centromeres. Progress in Molecular and Subcellular Biology, 2009, 48, 153-179.	0.9	14
131	Lineage-Specific Adaptive Evolution of the Centromeric Protein CENH3 in Diploid and Allotetraploid Oryza Species. Molecular Biology and Evolution, 2009, 26, 2877-2885.	3.5	59
132	Freedom Russetâ€"A Dual Purpose Russet Potato Cultivar with Resistance to Common Scab and Good Fry Quality. American Journal of Potato Research, 2009, 86, 406-414.	0.5	2
133	Superâ€stretched pachytene chromosomes for fluorescence <i>in situ</i> hybridization mapping and immunodetection of DNA methylation. Plant Journal, 2009, 59, 509-516.	2.8	46
134	A lineageâ€specific centromere retrotransposon in <i>Oryza brachyantha</i> . Plant Journal, 2009, 60, 820-831.	2.8	41
135	The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 2009, 326, 1112-1115.	6.0	3,612
136	Higher Copy Numbers of the Potato <i>RB</i> Transgene Correspond to Enhanced Transcript and Late Blight Resistance Levels. Molecular Plant-Microbe Interactions, 2009, 22, 437-446.	1.4	92
137	Correlation Between Transcript Abundance of the <i>RB</i> Gene and the Level of the <i>RB</i> -Mediated Late Blight Resistance in Potato. Molecular Plant-Microbe Interactions, 2009, 22, 447-455.	1.4	64
138	Maize Centromere Structure and Evolution: Sequence Analysis of Centromeres 2 and 5 Reveals Dynamic Loci Shaped Primarily by Retrotransposons. PLoS Genetics, 2009, 5, e1000743.	1.5	168
139	Histone modifications associated with both A and B chromosomes of maize. Chromosome Research, 2008, 16, 1203-1214.	1.0	59
140	The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452, 991-996.	13.7	964
141	Low X/Y divergence in four pairs of papaya sexâ€linked genes. Plant Journal, 2008, 53, 124-132.	2.8	78
142	Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with tomato but divergence in repetitive sequence composition. BMC Genomics, 2008, 9, 286.	1.2	37
143	Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight. BMC Plant Biology, 2008, 8, 8.	1.6	65
144	Major cytogenetic landmarks and karyotype analysis in <i>Daucus carota</i> and other Apiaceae. American Journal of Botany, 2008, 95, 793-804.	0.8	41

#	Article	IF	Citations
145	Allopolyploid speciation of the Mexican tetraploid potato species <i>Solanum stoloniferum</i> and <i>S. hjertingii</i> revealed by genomic in situ hybridization. Genome, 2008, 51, 714-720.	0.9	50
146	Chromatin Structure and Physical Mapping of Chromosome 6 of Potato and Comparative Analyses With Tomato. Genetics, 2008, 180, 1307-1317.	1.2	82
147	DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Research, 2008, 18, 1938-1943.	2.4	107
148	High-Resolution Mapping of Epigenetic Modifications of the Rice Genome Uncovers Interplay between DNA Methylation, Histone Methylation, and Gene Expression. Plant Cell, 2008, 20, 259-276.	3.1	281
149	Extraordinary Tertiary Constrictions of <i>Tripsacum dactyloides</i> Chromosomes: Implications for Karyotype Evolution of Polyploids Driven by Segmental Chromosome Losses. Genetics, 2008, 179, 1119-1123.	1.2	5
150	Engineered Plant Minichromosomes: A Bottom-Up Success?. Plant Cell, 2008, 20, 8-10.	3.1	31
151	Epigenetic Modification of Centromeric Chromatin: Hypomethylation of DNA Sequences in the CENH3-Associated Chromatin in <i>Arabidopsis thaliana</i>	3.1	155
152	Performance of Transgenic Potato Containing the Late Blight Resistance Gene <i>RB</i> Plant Disease, 2008, 92, 339-343.	0.7	73
153	Intergenic Locations of Rice Centromeric Chromatin. PLoS Biology, 2008, 6, e286.	2.6	81
154	Phenotypic and Transcriptomic Changes Associated With Potato Autopolyploidization. Genetics, 2007, 176, 2055-2067.	1.2	208
155	The Centromeric Retrotransposons of Rice Are Transcribed and Differentially Processed by RNA Interference. Genetics, 2007, 176, 749-761.	1.2	63
156	Megachip â€" a new potato variety for chipping. American Journal of Potato Research, 2007, 84, 343-350.	0.5	9
157	Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA. Transgenic Research, 2007, 16, 341-351.	1.3	52
158	Rice as a model for centromere and heterochromatin research. Chromosome Research, 2007, 15, 77-84.	1.0	41
159	Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Molecular Genetics and Genomics, 2007, 278, 177-185.	1.0	73
160	Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 2006, 49, 1057-1068.	0.9	329
161	Markerâ€Assisted Selection for the Broadâ€Spectrum Potato Late Blight Resistance Conferred by Gene RB Derived from a Wild Potato Species. Crop Science, 2006, 46, 589-594.	0.8	90
162	White Pearlâ€"A chipping potato variety with high level of resistance to cold sweetening. American Journal of Potato Research, 2006, 83, 259-267.	0.5	10

#	Article	IF	Citations
163	Genomic and Genetic Characterization of Rice Cen3 Reveals Extensive Transcription and Evolutionary Implications of a Complex Centromere. Plant Cell, 2006, 18, 2123-2133.	3.1	95
164	Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice. Molecular Biology and Evolution, 2006, 23, 2505-2520.	3.5	62
165	Precise Centromere Mapping Using a Combination of Repeat Junction Markers and Chromatin Immunoprecipitation–Polymerase Chain Reaction. Genetics, 2006, 174, 1057-1061.	1.2	35
166	Structural Diversity and Differential Transcription of the Patatin Multicopy Gene Family During Potato Tuber Development. Genetics, 2006, 172, 1263-1275.	1.2	38
167	The R1 resistance gene cluster contains three groups of independently evolving, type I R1 homologues and shows substantial structural variation among haplotypes of Solanum demissum. Plant Journal, 2005, 44, 37-51.	2.8	94
168	The map-based sequence of the rice genome. Nature, 2005, 436, 793-800.	13.7	3,365
169	Millennium Russet: A dual purpose russet potato variety. American Journal of Potato Research, 2005, 82, 211-219.	0.5	4
170	Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. Genome Research, 2005, 15, 1284-1291.	2.4	73
171	Molecular and Functional Dissection of the Maize B Chromosome Centromere. Plant Cell, 2005, 17, 1412-1423.	3.1	110
172	Transcription and Histone Modifications in the Recombination-Free Region Spanning a Rice Centromere [W]. Plant Cell, 2005, 17, 3227-3238.	3.1	107
173	Structure, Divergence, and Distribution of the CRR Centromeric Retrotransposon Family in Rice. Molecular Biology and Evolution, 2005, 22, 845-855.	3.5	91
174	From The Cover: Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11793-11798.	3.3	175
175	Sobo, a Recently Amplified Satellite Repeat of Potato, and Its Implications for the Origin of Tandemly Repeated Sequences. Genetics, 2005, 170, 1231-1238.	1.2	71
176	Development and characterization of potato- <i>Solanum brevidens</i> chromosomal addition/substitution lines. Cytogenetic and Genome Research, 2005, 109, 368-372.	0.6	18
177	Fluorescence In Situ Hybridization Analysis Reveals Multiple Loci of Knob-associated DNA Elements in One-knob and Knobless Maize Lines. Journal of Histochemistry and Cytochemistry, 2004, 52, 1113-1116.	1.3	24
178	Maize Centromeres: Organization and Functional Adaptation in the Genetic Background of Oat. Plant Cell, 2004, 16, 571-581.	3.1	241
179	Sequencing of a rice centromere uncovers active genes. Nature Genetics, 2004, 36, 138-145.	9.4	489
180	The centromeric regions of potato chromosomes contain megabase-sized tandem arrays of telomere-similar sequence. Chromosoma, 2004, 113, 77-83.	1.0	62

#	Article	IF	CITATIONS
181	Red Pearl: A new gourmet red potato variety. American Journal of Potato Research, 2004, 81, 209-213.	0.5	4
182	Transfer of tuber soft rot and early blight resistances from Solanum brevidens into cultivated potato. Theoretical and Applied Genetics, 2004, 109, 249-254.	1.8	56
183	Molecular Integrated Cytogenetic Mapping. , 2004, , 1-3.		0
184	Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. × Cucumis sativus L Theoretical and Applied Genetics, 2003, 106, 688-695.	1.8	56
185	BIBAC and TAC clones containing potato genomic DNA fragments larger than 100Âkb are not stable in Agrobacterium. Theoretical and Applied Genetics, 2003, 107, 958-964.	1.8	47
186	A molecular view of plant centromeres. Trends in Plant Science, 2003, 8, 570-575.	4.3	300
187	In-Depth View of Structure, Activity, and Evolution of Rice Chromosome 10. Science, 2003, 300, 1566-1569.	6.0	245
188	Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9128-9133.	3.3	532
189	Molecular and Cytological Analyses of Large Tracks of Centromeric DNA Reveal the Structure and Evolutionary Dynamics of Maize Centromeres. Genetics, 2003, 163, 759-770.	1.2	155
190	Chromatin Immunoprecipitation Reveals That the 180-bp Satellite Repeat Is the Key Functional DNA Element of <i>Arabidopsis thaliana</i>	1.2	254
191	Centromeric Retroelements and Satellites Interact with Maize Kinetochore Protein CENH3. Plant Cell, 2002, 14, 2825-2836.	3.1	354
192	A Fine Physical Map of the Rice Chromosome 4. Genome Research, 2002, 12, 817-823.	2.4	64
193	Red companion: A new red potato variety for fresh market. American Journal of Potato Research, 2002, 79, 133-137.	0.5	1
194	Sequence and analysis of rice chromosome 4. Nature, 2002, 420, 316-320.	13.7	471
195	The genome sequence and structure of rice chromosome 1. Nature, 2002, 420, 312-316.	13.7	519
196	Functional Rice Centromeres Are Marked by a Satellite Repeat and a Centromere-Specific Retrotransposon. Plant Cell, 2002, 14, 1691-1704.	3.1	375
197	Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Research, 2002, 10, 379-387.	1.0	84
198	<i>Dasheng</i> : A Recently Amplified Nonautonomous Long Terminal Repeat Element That Is a Major Component of Pericentromeric Regions in Rice. Genetics, 2002, 161, 1293-1305.	1.2	73

#	Article	IF	CITATIONS
199	Highly Condensed Potato Pericentromeric Heterochromatin Contains rDNA-Related Tandem Repeats. Genetics, 2002, 162, 1435-1444.	1.2	75
200	A bacterial artificial chromosome (BAC) library of <i>Malus floribunda </i> 821 and contig construction for positional cloning of the apple scab resistance gene <i>Vf </i> 81 and contig construction for positional cloning of the apple scab resistance gene <i>Vf </i> 81 and contig construction for positional cloning of the apple scab resistance gene <i>Vf </i> 81 and contig construction for positional cloning of the apple scab resistance gene <i>Vf </i> 81 and contig contiguous flat contiguous f	0.9	43
201	Instability of bacterial artificial chromosome (BAC) clones containing tandemly repeated DNA sequences. Genome, 2001, 44, 463-469.	0.9	38
202	A tandemly repeated DNA sequence is associated with both knob-like heterochromatin and a highly decondensed structure in the meiotic pachytene chromosomes of rice. Chromosoma, 2001, 110, 24-31.	1.0	59
203	Cytogenomic Analyses Reveal the Structural Plasticity of the Chloroplast Genome in Higher Plants. Plant Cell, 2001, 13, 245-254.	3.1	125
204	Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: Implication of potential sequencing errors caused by large-unit repeats. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5099-5103.	3.3	207
205	Toward a Cytological Characterization of the Rice Genome. Genome Research, 2001, 11, 2133-2141.	2.4	182
206	The genetic identity of alien chromosomes in potato breeding lines revealed by sequential GISH and FISH analyses using chromosome-specific cytogenetic DNA markers. Genome, 2001, 44, 729-734.	0.9	34
207	High-Resolution Pachytene Chromosome Mapping of Bacterial Artificial Chromosomes Anchored by Genetic Markers Reveals the Centromere Location and the Distribution of Genetic Recombination Along Chromosome 10 of Rice. Genetics, 2001, 157, 1749-1757.	1.2	144
208	A bacterial artificial chromosome (BAC) library of <i>Malus floribunda </i> 821 and contig construction for positional cloning of the apple scab resistance gene <i>Vf</i> . Genome, 2001, 44, 1104-1113.	0.9	24
209	Development and Applications of a Complete Set of Rice Telotrisomics. Genetics, 2001, 157, 361-368.	1.2	39
210	Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theoretical and Applied Genetics, 2000, 101, 1001-1007.	1.8	196
211	Mapping of centromeric regions on the molecular linkage map of rice (Oryza sativa L.) using centromere-associated sequences. Molecular Genetics and Genomics, 2000, 263, 165-172.	2.4	20
212	Genomic in situ hybridization (GISH) reveals high chromosome pairing affinity between <i>Lolium perenne</i> and <i>Festuca mairei</i> . Genome, 2000, 43, 398-403.	0.9	28
213	Construction of a bacterial artificial chromosome (BAC) library for potato molecular cytogenetics research. Genome, 2000, 43, 199-204.	0.9	56
214	Comparative Fluorescence in Situ Hybridization Mapping of a 431-kb Arabidopsis thaliana Bacterial Artificial Chromosome Contig Reveals the Role of Chromosomal Duplications in the Expansion of the Brassica rapa Genome. Genetics, 2000, 156, 833-838.	1.2	90
215	Genomic in situ hybridization (GISH) reveals high chromosome pairing affinity between <i>Lolium perenne</i> and <i>Festuca mairei</i> . Genome, 2000, 43, 398-403.	0.9	18
216	Digital mapping of bacterial artificial chromosomes by fluorescence in situ hybridization. Plant Journal, 1999, 17, 581-587.	2.8	43

#	Article	IF	Citations
217	Physical mapping of 45S rRNA genes in Cucumis species by fluorescence in situ hybridization. Canadian Journal of Botany, 1999, 77, 389-393.	1.2	19
218	Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. , $1998, 6, 551-558.$		147
219	A reevaluation of karyotype in cucumber (Cucumis sativus L.). Genetic Resources and Crop Evolution, 1998, 45, 301-305.	0.8	29
220	Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theoretical and Applied Genetics, 1998, 96, 832-839.	1.8	59
221	Application of fiber-FISH in physical mapping of <i>Arabidopsis thaliana</i> . Genome, 1998, 41, 566-572.	0.9	153
222	Rice (Oryza sativa) centromeric regions consist of complex DNA. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8135-8140.	3.3	225
223	Retrotransposon-Related DNA Sequences in the Centromeres of Grass Chromosomes. Genetics, 1998, 150, 1615-1623.	1.2	161
224	Application of fiber-FISH in physical mapping of <i>Arabidopsis thaliana</i> . Genome, 1998, 41, 566-572.	0.9	68
225	A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14210-14213.	3.3	195
226	Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 1996, 91, 59-87.	0.6	834
227	Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4487-4491.	3.3	369
228	Detection of 5S rDNA and other repeated DNA on supernumerary B chromosomes of Triticum species (Poaceae). Plant Systematics and Evolution, 1995, 196, 131-139.	0.3	25
229	Cytogenetical studies in wheat XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica, 1995, 82, 141-147.	0.6	52
230	Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theoretical and Applied Genetics, 1995, 90, 150-156.	1.8	67
231	Detection of intergenomic translocations with centromeric and noncentromeric breakpoints in Triticum araraticum: mechanism of origin and adaptive significance. Genome, 1995, 38, 976-981.	0.9	26
232	Compensation Indices of Radiationâ€Induced Wheatâ€ <i>Agropyron elongatum</i> Translocations Conferring Resistance to Leaf Rust and Stem Rust. Crop Science, 1994, 34, 400-404.	0.8	68
233	Construction and characterization of bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Research, 1994, 22, 4922-4931.	6.5	389
234	Introgression of Elymus trachycaulus chromatin into common wheat. Chromosome Research, 1994, 2, 3-13.	1.0	27

#	Article	IF	CITATIONS
235	Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploid wheats. Chromosome Research, 1994, 2, 59-64.	1.0	182
236	Chromosome painting of Amigo wheat. Theoretical and Applied Genetics, 1994, 89-89, 811-813.	1.8	56
237	Recent advances in alien gene transfer in wheat. Euphytica, 1994, 73, 199-212.	0.6	431
238	New 18Si; $\frac{1}{2}$ 26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma, 1994, 103, 179-185.	1.0	177
239	Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome, 1994, 37, 717-725.	0.9	287
240	Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theoretical and Applied Genetics, 1993, 86-86, 141-149.	1.8	102
241	Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. Theoretical and Applied Genetics, 1993, 86, 41-48.	1.8	43
242	A ?zebra? chromosome arising from multiple translocations involving non-homologous chromosomes. Chromosoma, 1993, 102, 612-617.	1.0	21
243	Standard karyotype of <i>Triticum longissimum</i> and its cytogenetic relationship with <i>T</i> . <i>aestivum</i> . Genome, 1993, 36, 731-742.	0.9	94
244	Sequential chromosome banding and in situ hybridization analysis. Genome, 1993, 36, 792-795.	0.9	79
245	Alloplasmic wheat – Elymus ciliaris chromosome addition lines. Genome, 1993, 36, 327-333.	0.9	25
246	Rf genes restore fertility in wheat lines with cytoplasms of Elymus trachycaulus and E. ciliaris. Genome, 1992, 35, 614-620.	0.9	14