Jiming Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5475598/publications.pdf

Version: 2024-02-01

4645 6254 32,035 246 80 170 citations h-index g-index papers 353 353 353 19518 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 2009, 326, 1112-1115.	12.6	3,612
2	The map-based sequence of the rice genome. Nature, 2005, 436, 793-800.	27.8	3,365
3	Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475, 189-195.	27.8	1,912
4	The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452, 991-996.	27.8	964
5	Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 1996, 91, 59-87.	1.2	834
6	Gene amplification confers glyphosate resistance in <i>Amaranthus palmeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1029-1034.	7.1	557
7	Copy Number Variation of Multiple Genes at <i>Rhg1</i> Mediates Nematode Resistance in Soybean. Science, 2012, 338, 1206-1209.	12.6	535
8	Gene <i>RB</i> cloned from <i>Solanum bulbocastanum</i> confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9128-9133.	7.1	532
9	The genome sequence and structure of rice chromosome 1. Nature, 2002, 420, 312-316.	27.8	519
10	Sequencing of a rice centromere uncovers active genes. Nature Genetics, 2004, 36, 138-145.	21.4	489
11	Sequence and analysis of rice chromosome 4. Nature, 2002, 420, 316-320.	27.8	471
12	Recent advances in alien gene transfer in wheat. Euphytica, 1993, 73, 199-212.	1.2	431
13	Construction and characterization of bacterial artificial chromosome library of <i>Sorghum bicolor </i> Nucleic Acids Research, 1994, 22, 4922-4931.	14.5	389
14	Functional Rice Centromeres Are Marked by a Satellite Repeat and a Centromere-Specific Retrotransposon. Plant Cell, 2002, 14, 1691-1704.	6.6	375
15	Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4487-4491.	7.1	369
16	Centromeric Retroelements and Satellites Interact with Maize Kinetochore Protein CENH3. Plant Cell, 2002, 14, 2825-2836.	6.6	354
17	Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 2006, 49, 1057-1068.	2.0	329
18	A molecular view of plant centromeres. Trends in Plant Science, 2003, 8, 570-575.	8.8	300

#	Article	IF	CITATIONS
19	Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome, 1994, 37, 717-725.	2.0	287
20	High-Resolution Mapping of Epigenetic Modifications of the Rice Genome Uncovers Interplay between DNA Methylation, Histone Methylation, and Gene Expression. Plant Cell, 2008, 20, 259-276.	6.6	281
21	Sequencing papaya X and Y ^h chromosomes reveals molecular basis of incipient sex chromosome evolution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13710-13715.	7.1	264
22	Chromatin Immunoprecipitation Reveals That the 180-bp Satellite Repeat Is the Key Functional DNA Element of <i>Arabidopsis thaliana</i>	2.9	254
23	In-Depth View of Structure, Activity, and Evolution of Rice Chromosome 10. Science, 2003, 300, 1566-1569.	12.6	245
24	Maize Centromeres: Organization and Functional Adaptation in the Genetic Background of Oat. Plant Cell, 2004, 16, 571-581.	6.6	241
25	Rice (<i>Oryza sativa </i>) centromeric regions consist of complex DNA. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8135-8140.	7.1	225
26	Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution Â. Plant Cell, 2012, 24, 3559-3574.	6.6	221
27	Phenotypic and Transcriptomic Changes Associated With Potato Autopolyploidization. Genetics, 2007, 176, 2055-2067.	2.9	208
28	Complex mtDNA constitutes an approximate 620-kb insertion on <i>Arabidopsis thaliana</i> chromosome 2: Implication of potential sequencing errors caused by large-unit repeats. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5099-5103.	7.1	207
29	High-resolution mapping of open chromatin in the rice genome. Genome Research, 2012, 22, 151-162.	5.5	205
30	Genome-Wide Identification of Regulatory DNA Elements and Protein-Binding Footprints Using Signatures of Open Chromatin in <i>Arabidopsis</i> Plant Cell, 2012, 24, 2719-2731.	6.6	204
31	Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theoretical and Applied Genetics, 2000, 101, 1001-1007.	3.6	196
32	A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14210-14213.	7.1	195
33	Chromosome-Specific Painting in <i>Cucumis</i> Species Using Bulked Oligonucleotides. Genetics, 2015, 200, 771-779.	2.9	192
34	Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nature Communications, 2013, 4, 1595.	12.8	190
35	Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploid wheats. Chromosome Research, 1994, 2, 59-64.	2.2	182
36	Toward a Cytological Characterization of the Rice Genome. Genome Research, 2001, 11, 2133-2141.	5.5	182

#	Article	IF	CITATIONS
37	Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nature Communications, 2018, 9, 4580.	12.8	181
38	Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3447-3452.	7.1	180
39	New 18S�26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma, 1994, 103, 179-185.	2.2	177
40	Chromosome rearrangements during domestication of cucumber as revealed by highâ€density genetic mapping and draft genome assembly. Plant Journal, 2012, 71, 895-906.	5.7	177
41	Reinventing Potato as a Diploid Inbred Line–Based Crop. Crop Science, 2016, 56, 1412-1422.	1.8	176
42	From The Cover: Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11793-11798.	7.1	175
43	Maize Centromere Structure and Evolution: Sequence Analysis of Centromeres 2 and 5 Reveals Dynamic Loci Shaped Primarily by Retrotransposons. PLoS Genetics, 2009, 5, e1000743.	3.5	168
44	Suppression of the Vacuolar Invertase Gene Prevents Cold-Induced Sweetening in Potato \hat{A} \hat{A} \hat{A} . Plant Physiology, 2010, 154, 939-948.	4.8	165
45	Genome Reduction Uncovers a Large Dispensable Genome and Adaptive Role for Copy Number Variation in Asexually Propagated <i>Solanum tuberosum</i>): Plant Cell, 2016, 28, 388-405.	6.6	163
46	Retrotransposon-Related DNA Sequences in the Centromeres of Grass Chromosomes. Genetics, 1998, 150, 1615-1623.	2.9	161
47	Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed <i>Amaranthus palmeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3332-3337.	7.1	159
48	Epigenetic Modification of Centromeric Chromatin: Hypomethylation of DNA Sequences in the CENH3-Associated Chromatin in <i>Arabidopsis thaliana</i>	6.6	155
49	Molecular and Cytological Analyses of Large Tracks of Centromeric DNA Reveal the Structure and Evolutionary Dynamics of Maize Centromeres. Genetics, 2003, 163, 759-770.	2.9	155
50	Application of fiber-FISH in physical mapping of <i>Arabidopsis thaliana</i> . Genome, 1998, 41, 566-572.	2.0	153
51	Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: New functional implications for MITEs. Genome Research, 2009, 19, 42-56.	5.5	152
52	Construction of a chromosome-scale long-read reference genome assembly for potato. GigaScience, 2020, 9, .	6.4	150
53	Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Research, 1998, 6, 551-558.	2.2	147
54	Comparative Oligo-FISH Mapping: An Efficient and Powerful Methodology To Reveal Karyotypic and Chromosomal Evolution. Genetics, 2018, 208, 513-523.	2.9	146

#	Article	IF	CITATIONS
55	Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature, 2021, 590, 438-444.	27.8	144
56	High-Resolution Pachytene Chromosome Mapping of Bacterial Artificial Chromosomes Anchored by Genetic Markers Reveals the Centromere Location and the Distribution of Genetic Recombination Along Chromosome 10 of Rice. Genetics, 2001, 157, 1749-1757.	2.9	144
57	Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Research, 2019, 27, 153-165.	2.2	142
58	Distinct Copy Number, Coding Sequence, and Locus Methylation Patterns Underlie Rhg1-Mediated Soybean Resistance to Soybean Cyst Nematode Â. Plant Physiology, 2014, 165, 630-647.	4.8	136
59	Genome-Wide Prediction and Validation of Intergenic Enhancers in Arabidopsis Using Open Chromatin Signatures. Plant Cell, 2015, 27, 2415-2426.	6.6	136
60	Cytogenomic Analyses Reveal the Structural Plasticity of the Chloroplast Genome in Higher Plants. Plant Cell, 2001, 13, 245-254.	6.6	125
61	Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato. Genome Biology, 2019, 20, 123.	8.8	119
62	Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice. Plant Journal, 2010, 63, 353-365.	5.7	112
63	Genome sequence of M6, a diploid inbred clone of the highâ€glycoalkaloidâ€producing tuberâ€bearing potato species <i>Solanum chacoense</i> , reveals residual heterozygosity. Plant Journal, 2018, 94, 562-570.	5.7	112
64	Agrobacterium-Mediated Transient Gene Expression and Silencing: A Rapid Tool for Functional Gene Assay in Potato. PLoS ONE, 2009, 4, e5812.	2.5	111
65	Molecular and Functional Dissection of the Maize B Chromosome Centromere. Plant Cell, 2005, 17, 1412-1423.	6.6	110
66	Transcription and Histone Modifications in the Recombination-Free Region Spanning a Rice Centromere [W]. Plant Cell, 2005, 17, 3227-3238.	6.6	107
67	DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Research, 2008, 18, 1938-1943.	5.5	107
68	Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theoretical and Applied Genetics, 1993, 86-86, 141-149.	3.6	102
69	Genome-Wide Nucleosome Occupancy and Positioning and Their Impact on Gene Expression and Evolution in Plants. Plant Physiology, 2015, 168, 1406-1416.	4.8	98
70	Genomic and Genetic Characterization of Rice Cen3 Reveals Extensive Transcription and Evolutionary Implications of a Complex Centromere. Plant Cell, 2006, 18, 2123-2133.	6.6	95
71	Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1679-1685.	7.1	95
72	Standard karyotype of <i>Triticum longissimum</i> and its cytogenetic relationship with <i>T</i> ci>aestivum. Genome, 1993, 36, 731-742.	2.0	94

#	Article	IF	CITATIONS
73	The R1 resistance gene cluster contains three groups of independently evolving, type I R1 homologues and shows substantial structural variation among haplotypes of Solanum demissum. Plant Journal, 2005, 44, 37-51.	5.7	94
74	Higher Copy Numbers of the Potato <i>RB</i> Transgene Correspond to Enhanced Transcript and Late Blight Resistance Levels. Molecular Plant-Microbe Interactions, 2009, 22, 437-446.	2.6	92
75	Structure, Divergence, and Distribution of the CRR Centromeric Retrotransposon Family in Rice. Molecular Biology and Evolution, 2005, 22, 845-855.	8.9	91
76	Markerâ€Assisted Selection for the Broadâ€Spectrum Potato Late Blight Resistance Conferred by Gene RB Derived from a Wild Potato Species. Crop Science, 2006, 46, 589-594.	1.8	90
77	Centromere repositioning in cucurbit species: Implication of the genomic impact from centromere activation and inactivation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14937-14941.	7.1	90
78	Nextâ€generation sequencing, <scp>FISH</scp> mapping and syntenyâ€based modeling reveal mechanisms of decreasing dysploidy in <i><scp>C</scp>ucumis</i> . Plant Journal, 2014, 77, 16-30.	5.7	90
79	Comparative Fluorescence in Situ Hybridization Mapping of a 431-kb Arabidopsis thaliana Bacterial Artificial Chromosome Contig Reveals the Role of Chromosomal Duplications in the Expansion of the Brassica rapa Genome. Genetics, 2000, 156, 833-838.	2.9	90
80	PlantDHS: a database for DNase I hypersensitive sites in plants. Nucleic Acids Research, 2016, 44, D1148-D1153.	14.5	86
81	Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Research, 2002, 10, 379-387.	2.2	84
82	Chromatin Structure and Physical Mapping of Chromosome 6 of Potato and Comparative Analyses With Tomato. Genetics, 2008, 180, 1307-1317.	2.9	82
83	Intergenic Locations of Rice Centromeric Chromatin. PLoS Biology, 2008, 6, e286.	5.6	81
84	The <i>CentO</i> satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4875-83.	7.1	80
85	Sequential chromosome banding and in situ hybridization analysis. Genome, 1993, 36, 792-795.	2.0	79
86	Low X/Y divergence in four pairs of papaya sexâ€linked genes. Plant Journal, 2008, 53, 124-132.	5.7	78
87	Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Research, 2014, 24, 107-116.	5. 5	77
88	Organization and Evolution of Subtelomeric Satellite Repeats in the Potato Genome. G3: Genes, Genomes, Genetics, 2011, 1, 85-92.	1.8	75
89	Highly Condensed Potato Pericentromeric Heterochromatin Contains rDNA-Related Tandem Repeats. Genetics, 2002, 162, 1435-1444.	2.9	75
90	Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. Genome Research, 2005, 15, 1284-1291.	5 . 5	73

#	Article	IF	Citations
91	Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Molecular Genetics and Genomics, 2007, 278, 177-185.	2.1	73
92	Performance of Transgenic Potato Containing the Late Blight Resistance Gene <i>RB</i> . Plant Disease, 2008, 92, 339-343.	1.4	73
93	Boom-Bust Turnovers of Megabase-Sized Centromeric DNA in <i>Solanum</i> Species: Rapid Evolution of DNA Sequences Associated with Centromeres Â. Plant Cell, 2014, 26, 1436-1447.	6.6	73
94	<i>Dasheng</i> : A Recently Amplified Nonautonomous Long Terminal Repeat Element That Is a Major Component of Pericentromeric Regions in Rice. Genetics, 2002, 161, 1293-1305.	2.9	73
95	Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Molecular Plant, 2022, 15, 520-536.	8.3	72
96	Sobo, a Recently Amplified Satellite Repeat of Potato, and Its Implications for the Origin of Tandemly Repeated Sequences. Genetics, 2005, 170, 1231-1238.	2.9	71
97	Proliferation of Regulatory DNA Elements Derived from Transposable Elements in the Maize Genome. Plant Physiology, 2018, 176, 2789-2803.	4.8	71
98	Compensation Indices of Radiationâ€Induced Wheatâ€ <i>Agropyron elongatum</i> Translocations Conferring Resistance to Leaf Rust and Stem Rust. Crop Science, 1994, 34, 400-404.	1.8	68
99	Application of fiber-FISH in physical mapping of <i>Arabidopsis thaliana</i> . Genome, 1998, 41, 566-572.	2.0	68
100	Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theoretical and Applied Genetics, 1995, 90, 150-156.	3.6	67
101	Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight. BMC Plant Biology, 2008, 8, 8.	3.6	65
102	Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. Genome Research, 2011, 21, 908-914.	5.5	65
103	A Fine Physical Map of the Rice Chromosome 4. Genome Research, 2002, 12, 817-823.	5.5	64
104	Correlation Between Transcript Abundance of the <i>RB</i> Gene and the Level of the <irb< i="">Hediated Late Blight Resistance in Potato. Molecular Plant-Microbe Interactions, 2009, 22, 447-455.</irb<>	2.6	64
105	The Centromeric Retrotransposons of Rice Are Transcribed and Differentially Processed by RNA Interference. Genetics, 2007, 176, 749-761.	2.9	63
106	The centromeric regions of potato chromosomes contain megabase-sized tandem arrays of telomere-similar sequence. Chromosoma, 2004, 113, 77-83.	2.2	62
107	Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice. Molecular Biology and Evolution, 2006, 23, 2505-2520.	8.9	62
108	Meiotic crossovers are associated with open chromatin and enriched with Stowaway transposons in potato. Genome Biology, 2017, 18, 203.	8.8	62

#	Article	IF	Citations
109	Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theoretical and Applied Genetics, 1998, 96, 832-839.	3.6	59
110	A tandemly repeated DNA sequence is associated with both knob-like heterochromatin and a highly decondensed structure in the meiotic pachytene chromosomes of rice. Chromosoma, 2001, 110, 24-31.	2.2	59
111	Histone modifications associated with both A and B chromosomes of maize. Chromosome Research, 2008, 16, 1203-1214.	2.2	59
112	Lineage-Specific Adaptive Evolution of the Centromeric Protein CENH3 in Diploid and Allotetraploid Oryza Species. Molecular Biology and Evolution, 2009, 26, 2877-2885.	8.9	59
113	Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma, 2010, 119, 435-442.	2.2	58
114	Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma, 2010, 119, 553-563.	2.2	58
115	Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species. Chromosoma, 2018, 127, 505-513.	2.2	57
116	Chromosome painting of Amigo wheat. Theoretical and Applied Genetics, 1994, 89-89, 811-813.	3.6	56
117	Construction of a bacterial artificial chromosome (BAC) library for potato molecular cytogenetics research. Genome, 2000, 43, 199-204.	2.0	56
118	Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. × Cucumis sativus L Theoretical and Applied Genetics, 2003, 106, 688-695.	3.6	56
119	Transfer of tuber soft rot and early blight resistances from Solanum brevidens into cultivated potato. Theoretical and Applied Genetics, 2004, 109, 249-254.	3.6	56
120	Sucrose promotes stem branching through cytokinin. Plant Physiology, 2021, 185, 1708-1721.	4.8	54
121	Towards genome-wide prediction and characterization of enhancers in plants. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 131-139.	1.9	53
122	Cytogenetical studies in wheat XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica, 1995, 82, 141-147.	1.2	52
123	Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA. Transgenic Research, 2007, 16, 341-351.	2.4	52
124	Euchromatic Subdomains in Rice Centromeres Are Associated with Genes and Transcription. Plant Cell, 2011, 23, 4054-4064.	6.6	51
125	Transposons play an important role in the evolution and diversification of centromeres among closely related species. Frontiers in Plant Science, 2015, 6, 216.	3.6	51
126	Allopolyploid speciation of the Mexican tetraploid potato species <i>Solanum stoloniferum</i> and <i>S. hjertingii</i> revealed by genomic in situ hybridization. Genome, 2008, 51, 714-720.	2.0	50

#	Article	IF	CITATIONS
127	Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species. Chromosome Research, 2013, 21, 5-13.	2.2	50
128	Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products. Plant Biotechnology Journal, 2016, 14, 709-718.	8.3	50
129	The â€~dark matter' in the plant genomes: non-coding and unannotated DNA sequences associated with open chromatin. Current Opinion in Plant Biology, 2015, 24, 17-23.	7.1	49
130	Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biology, 2018, 18, 110.	3.6	48
131	BIBAC and TAC clones containing potato genomic DNA fragments larger than 100Âkb are not stable in Agrobacterium. Theoretical and Applied Genetics, 2003, 107, 958-964.	3.6	47
132	Superâ€stretched pachytene chromosomes for fluorescence <i>in situ</i> hybridization mapping and immunodetection of DNA methylation. Plant Journal, 2009, 59, 509-516.	5.7	46
133	An extraordinarily stable karyotype of the woody <i>Populus</i> species revealed by chromosome painting. Plant Journal, 2020, 101, 253-264.	5 . 7	46
134	Strong epigenetic similarity between maize centromeric and pericentromeric regions at the level of small RNAs, DNA methylation and H3 chromatin modifications. Nucleic Acids Research, 2012, 40, 1550-1560.	14.5	45
135	Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin. BMC Research Notes, 2014, 7, 801.	1.4	45
136	Dualâ€color oligoâ€FISH can reveal chromosomal variations and evolution in <i>Oryza</i> species. Plant Journal, 2020, 101, 112-121.	5.7	44
137	Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. Theoretical and Applied Genetics, 1993, 86, 41-48.	3.6	43
138	Digital mapping of bacterial artificial chromosomes by fluorescence <i>in situ</i> hybridization. Plant Journal, 1999, 17, 581-587.	5.7	43
139	A bacterial artificial chromosome (BAC) library of <i>Malus floribunda</i> 821 and contig construction for positional cloning of the apple scab resistance gene <i>Vf</i> 61 Senome, 2001, 44, 1104-1113.	2.0	43
140	Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data. Bioinformatics, 2010, 26, 2101-2108.	4.1	43
141	Analysis of Ribosome-Associated mRNAs in Rice Reveals the Importance of Transcript Size and GC Content in Translation. G3: Genes, Genomes, Genetics, 2017, 7, 203-219.	1.8	43
142	Chromosome painting and comparative physical mapping of the sex chromosomes in Populus tomentosa and Populus deltoides. Chromosoma, 2018, 127, 313-321.	2.2	43
143	Genomic editing of intronic enhancers unveils their role in fine-tuning tissue-specific gene expression in <i>Arabidopsis thaliana</i> . Plant Cell, 2021, 33, 1997-2014.	6.6	43
144	Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome Research, 2011, 19, 493-506.	2.2	42

#	Article	IF	Citations
145	Rice as a model for centromere and heterochromatin research. Chromosome Research, 2007, 15, 77-84.	2.2	41
146	Major cytogenetic landmarks and karyotype analysis in <i>Daucus carota</i> and other Apiaceae. American Journal of Botany, 2008, 95, 793-804.	1.7	41
147	A lineageâ€specific centromere retrotransposon in <i>Oryza brachyantha</i> . Plant Journal, 2009, 60, 820-831.	5 . 7	41
148	Historical Meiotic Crossover Hotspots Fueled Patterns of Evolutionary Divergence in Rice. Plant Cell, 2019, 31, 645-662.	6.6	41
149	Meiotic crossovers characterized by haplotype-specific chromosome painting in maize. Nature Communications, 2019, 10, 4604.	12.8	40
150	Vacuolar Invertase Gene Silencing in Potato (Solanum tuberosum L.) Improves Processing Quality by Decreasing the Frequency of Sugar-End Defects. PLoS ONE, 2014, 9, e93381.	2.5	40
151	Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genomics, 2012, 13, 176.	2.8	39
152	Copy number variation in potato – an asexually propagated autotetraploid species. Plant Journal, 2013, 75, 80-89.	5.7	39
153	Development and Applications of a Complete Set of Rice Telotrisomics. Genetics, 2001, 157, 361-368.	2.9	39
154	Instability of bacterial artificial chromosome (BAC) clones containing tandemly repeated DNA sequences. Genome, 2001, 44, 463-469.	2.0	38
155	Structural Diversity and Differential Transcription of the Patatin Multicopy Gene Family During Potato Tuber Development. Genetics, 2006, 172, 1263-1275.	2.9	38
156	Developing Coldâ€Chipping Potato Varieties by Silencing the Vacuolar Invertase Gene. Crop Science, 2011, 51, 981-990.	1.8	38
157	Firstâ€generation genome editing in potato using hairy root transformation. Plant Biotechnology Journal, 2020, 18, 2201-2209.	8.3	38
158	Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with tomato but divergence in repetitive sequence composition. BMC Genomics, 2008, 9, 286.	2.8	37
159	Precise Centromere Mapping Using a Combination of Repeat Junction Markers and Chromatin Immunoprecipitation–Polymerase Chain Reaction. Genetics, 2006, 174, 1057-1061.	2.9	35
160	Genome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in Arabidopsis thaliana. Genome Biology, 2020, 21, 24.	8.8	35
161	The genetic identity of alien chromosomes in potato breeding lines revealed by sequential GISH and FISH analyses using chromosome-specific cytogenetic DNA markers. Genome, 2001, 44, 729-734.	2.0	34
162	Integration of Genetic and Cytological Maps and Development of a Pachytene Chromosome-based Karyotype in Papaya. Tropical Plant Biology, 2010, 3, 166-170.	1.9	34

#	Article	IF	CITATIONS
163	Genome-Wide Mapping of DNase I Hypersensitive Sites in Plants. Methods in Molecular Biology, 2015, 1284, 71-89.	0.9	34
164	Genome-Wide Nucleosome Positioning Is Orchestrated by Genomic Regions Associated with DNase I Hypersensitivity in Rice. PLoS Genetics, 2014, 10, e1004378.	3.5	33
165	Extraordinarily conserved chromosomal synteny of <i>Citrus</i> species revealed by chromosomeâ€specific painting. Plant Journal, 2020, 103, 2225-2235.	5.7	33
166	Genomic in situ hybridization reveals both auto- and allopolyploid origins of different North and Central American hexaploid potato (<i>Solanum</i> sect. <i>Petota</i>) species. Genome, 2012, 55, 407-415.	2.0	32
167	Engineered Plant Minichromosomes: A Bottom-Up Success?. Plant Cell, 2008, 20, 8-10.	6.6	31
168	Local Changes in Chromatin Accessibility and Transcriptional Networks Underlying the Nitrate Response in Arabidopsis Roots. Molecular Plant, 2019, 12, 1545-1560.	8.3	31
169	Chorus2: design of genomeâ€scale oligonucleotideâ€based probes for fluorescence <i>inÂsitu</i> hybridization. Plant Biotechnology Journal, 2021, 19, 1967-1978.	8.3	31
170	Insertional Mutagenesis Using <i>Tnt1</i> Retrotransposon in Potato. Plant Physiology, 2013, 163, 21-29.	4.8	30
171	Gene Expression and Chromatin Modifications Associated with Maize Centromeres. G3: Genes, Genomes, Genetics, 2016, 6, 183-192.	1.8	30
172	Amplification and adaptation of centromeric repeats in polyploid switchgrass species. New Phytologist, 2018, 218, 1645-1657.	7.3	30
173	Genome Reduction in Tetraploid Potato Reveals Genetic Load, Haplotype Variation, and Loci Associated With Agronomic Traits. Frontiers in Plant Science, 2018, 9, 944.	3.6	30
174	A reevaluation of karyotype in cucumber (Cucumis sativus L.). Genetic Resources and Crop Evolution, 1998, 45, 301-305.	1.6	29
175	Chromatin-associated transcripts of tandemly repetitive DNA sequences revealed by RNA-FISH. Chromosome Research, 2016, 24, 467-480.	2.2	29
176	Genomic in situ hybridization (GISH) reveals high chromosome pairing affinity between <i>Lolium perenne</i> and <i>Festuca mairei</i> . Genome, 2000, 43, 398-403.	2.0	28
177	Introgression of Elymus trachycaulus chromatin into common wheat. Chromosome Research, 1994, 2, 3-13.	2.2	27
178	Detection of intergenomic translocations with centromeric and noncentromeric breakpoints in Triticum araraticum: mechanism of origin and adaptive significance. Genome, 1995, 38, 976-981.	2.0	26
179	A universal chromosome identification system for maize and wild Zea species. Chromosome Research, 2020, 28, 183-194.	2.2	26
180	Alloplasmic wheat – Elymus ciliaris chromosome addition lines. Genome, 1993, 36, 327-333.	2.0	25

#	Article	IF	Citations
181	Detection of 5S rDNA and other repeated DNA on supernumerary B chromosomes of Triticum species (Poaceae). Plant Systematics and Evolution, 1995, 196, 131-139.	0.9	25
182	Three Potato Centromeres Are Associated with Distinct Haplotypes with or Without Megabase-Sized Satellite Repeat Arrays. Genetics, 2014, 196, 397-401.	2.9	25
183	Fluorescence In Situ Hybridization Analysis Reveals Multiple Loci of Knob-associated DNA Elements in One-knob and Knobless Maize Lines. Journal of Histochemistry and Cytochemistry, 2004, 52, 1113-1116.	2.5	24
184	Etiolated Stem Branching Is a Result of Systemic Signaling Associated with Sucrose Level. Plant Physiology, 2017, 175, 734-745.	4.8	24
185	A bacterial artificial chromosome (BAC) library of <i>Malus floribunda </i> 821 and contig construction for positional cloning of the apple scab resistance gene <i>Vf</i> 81. Genome, 2001, 44, 1104-1113.	2.0	24
186	Evidence for Emergence of Sex-Determining Gene(s) in a Centromeric Region in <i>Vasconcellea parviflora</i> . Genetics, 2015, 199, 413-421.	2.9	23
187	Oligo-FISH barcode in beans: a new chromosome identification system. Theoretical and Applied Genetics, 2021, 134, 3675-3686.	3.6	23
188	Conservation and Purifying Selection of Transcribed Genes Located in a Rice Centromere. Plant Cell, 2011, 23, 2821-2830.	6.6	22
189	Comparison of <i>Oryza sativa</i> and <i>Oryza brachyantha</i> Genomes Reveals Selection-Driven Gene Escape from the Centromeric Regions. Plant Cell, 2018, 30, 1729-1744.	6.6	22
190	A ?zebra? chromosome arising from multiple translocations involving non-homologous chromosomes. Chromosoma, 1993, 102, 612-617.	2.2	21
191	Genome of papaya, a fast growing tropical fruit tree. Tree Genetics and Genomes, 2012, 8, 445-462.	1.6	21
192	High-resolution tyramide-FISH mapping of markers tightly linked to the male-fertility restoration (Ms) locus of onion. Theoretical and Applied Genetics, 2016, 129, 535-545.	3.6	21
193	Overexpression of StNF-YB3.1 reduces photosynthetic capacity and tuber production, and promotes ABA-mediated stomatal closure in potato (Solanum tuberosum L.). Plant Science, 2017, 261, 50-59.	3.6	21
194	Generation of a chromosome-scale genome assembly of the insect-repellent terpenoid-producing Lamiaceae species, Callicarpa americana. GigaScience, 2020, 9, .	6.4	21
195	Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biology, 2021, 22, 237.	8.8	21
196	Mapping of centromeric regions on the molecular linkage map of rice (Oryza sativa L.) using centromere-associated sequences. Molecular Genetics and Genomics, 2000, 263, 165-172.	2.4	20
197	Stable Patterns of CENH3 Occupancy Through Maize Lineages Containing Genetically Similar Centromeres. Genetics, 2015, 200, 1105-1116.	2.9	20
198	Residual Heterozygosity and Epistatic Interactions Underlie the Complex Genetic Architecture of Yield in Diploid Potato. Genetics, 2019, 212, 317-332.	2.9	20

#	Article	IF	Citations
199	Fluorescent In Situ Hybridization Using Oligonucleotide-Based Probes. Methods in Molecular Biology, 2020, 2148, 71-83.	0.9	20
200	Physical mapping of 45S rRNA genes in Cucumis species by fluorescence in situ hybridization. Canadian Journal of Botany, 1999, 77, 389-393.	1.1	19
201	Open Chromatin in Plant Genomes. Cytogenetic and Genome Research, 2014, 143, 18-27.	1.1	19
202	Genome-wide mapping of DNase I hypersensitive sites reveals chromatin accessibility changes in Arabidopsis euchromatin and heterochromatin regions under extended darkness. Scientific Reports, 2017, 7, 4093.	3.3	19
203	Transcriptional and epigenetic adaptation of maize chromosomes in Oat-Maize addition lines. Nucleic Acids Research, 2018, 46, 5012-5028.	14.5	19
204	Preferential meiotic chromosome pairing among homologous chromosomes with cryptic sequence variation in tetraploid maize. New Phytologist, 2021, 229, 3294-3302.	7.3	19
205	The $\langle i \rangle$ Mitragyna speciosa $\langle i \rangle$ (Kratom) Genome: a resource for data-mining potent pharmaceuticals that impact human health. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	19
206	Chromosomeâ€specific painting unveils chromosomal fusions and distinct allopolyploid species in the <i>Saccharum</i> complex. New Phytologist, 2022, 233, 1953-1965.	7.3	19
207	Development and characterization of potato- <i>Solanum brevidens</i> chromosomal addition/substitution lines. Cytogenetic and Genome Research, 2005, 109, 368-372.	1.1	18
208	Genomic in situ hybridization (GISH) reveals high chromosome pairing affinity between <i>Lolium perenne</i> and <i>Festuca mairei</i> . Genome, 2000, 43, 398-403.	2.0	18
209	Stable integration of an engineered megabase repeat array into the maize genome. Plant Journal, 2012, 70, 357-365.	5.7	17
210	Recurrent establishment of de novo centromeres in the pericentromeric region of maize chromosome 3. Chromosome Research, 2017, 25, 299-311.	2.2	17
211	Overexpression of a modified eIF4E regulates potato virus Y resistance at the transcriptional level in potato. BMC Genomics, 2020, 21, 18.	2.8	17
212	BAC- and oligo-FISH mapping reveals chromosome evolution among Vigna angularis, V. unguiculata, and Phaseolus vulgaris. Chromosoma, 2021, 130, 133-147.	2.2	17
213	Cytogenetic and Sequence Analyses of Mitochondrial DNA Insertions in Nuclear Chromosomes of Maize. G3: Genes, Genomes, Genetics, 2015, 5, 2229-2239.	1.8	16
214	Updates on gene editing and its applications. Plant Physiology, 2022, 188, 1725-1730.	4.8	15
215	Rf genes restore fertility in wheat lines with cytoplasms of Elymus trachycaulus and E. ciliaris. Genome, 1992, 35, 614-620.	2.0	14
216	Structure and Evolution of Plant Centromeres. Progress in Molecular and Subcellular Biology, 2009, 48, 153-179.	1.6	14

#	Article	IF	CITATIONS
217	The unique epigenetic features of Pack-MULEs and their impact on chromosomal base composition and expression spectrum. Nucleic Acids Research, 2018, 46, 2380-2397.	14.5	14
218	Rapid validation of transcriptional enhancers using agrobacterium-mediated transient assay. Plant Methods, 2019, 15, 21.	4.3	13
219	A Mutant eIF4E Confers Resistance to Potato Virus Y Strains and is Inherited in a Dominant Manner in the Potato Varieties Atlantic and Russet Norkotah. American Journal of Potato Research, 2016, 93, 64-71.	0.9	11
220	White Pearlâ€"A chipping potato variety with high level of resistance to cold sweetening. American Journal of Potato Research, 2006, 83, 259-267.	0.9	10
221	Single molecule mtDNA fiber FISH for analyzing numtogenesis. Analytical Biochemistry, 2018, 552, 45-49.	2.4	10
222	Megachip â€" a new potato variety for chipping. American Journal of Potato Research, 2007, 84, 343-350.	0.9	9
223	Genomeâ€wide Inference of Somatic Translocation Events During Potato Dihaploid Production. Plant Genome, 2019, 12, 180079.	2.8	8
224	Isolation and Proteomics Analysis of Barley Centromeric Chromatin Using PICh. Journal of Proteome Research, 2016, 15, 1875-1882.	3.7	7
225	Application of MNase-Seq in the Global Mapping of Nucleosome Positioning in Plants. Methods in Molecular Biology, 2018, 1830, 353-366.	0.9	6
226	Extraordinary Tertiary Constrictions of <i>Tripsacum dactyloides</i> Chromosomes: Implications for Karyotype Evolution of Polyploids Driven by Segmental Chromosome Losses. Genetics, 2008, 179, 1119-1123.	2.9	5
227	Centromeres: Sequences, Structure, and Biology. , 2012, , 59-70.		5
228	Fluorescence in Situ Hybridization Techniques for Cytogenetic and Genomic Analyses. Methods in Molecular Biology, 2013, 956, 13-27.	0.9	5
229	LD-CNV: rapid and simple discovery of chromosomal translocations using linkage disequilibrium between copy number variable loci. Genetics, 2021, 219, .	2.9	5
230	Genomic abundance is not predictive of tandem repeat localization in grass genomes. PLoS ONE, 2017, 12, e0177896.	2.5	5
231	Red Pearl: A new gourmet red potato variety. American Journal of Potato Research, 2004, 81, 209-213.	0.9	4
232	Millennium Russet: A dual purpose russet potato variety. American Journal of Potato Research, 2005, 82, 211-219.	0.9	4
233	De novo assembly of potential linear artificial chromosome constructs capped with expansive telomeric repeats. Plant Methods, 2011, 7, 10.	4.3	4
234	Enhancerâ€mediated reporter gene expression in <i>Arabidopsis thaliana</i> : a forward genetic screen. Plant Journal, 2021, 106, 661-671.	5.7	4

#	Article	IF	Citations
235	Freedom Russet—A Dual Purpose Russet Potato Cultivar with Resistance to Common Scab and Good Fry Quality. American Journal of Potato Research, 2009, 86, 406-414.	0.9	2
236	Molecular Cytogenetics of Papaya. , 2014, , 157-167.		2
237	Genomics of Maize Centromeres. Compendium of Plant Genomes, 2018, , 59-80.	0.5	2
238	Constitutively Expressed RB Gene Confers a High Level but Unregulated Resistance to Potato Late Blight. American Journal of Potato Research, 2018, 95, 575-583.	0.9	2
239	Red companion: A new red potato variety for fresh market. American Journal of Potato Research, 2002, 79, 133-137.	0.9	1
240	Molecular and Cytological Characterization of Centromeric Retrotransposons in a Wild Relative of Rice, Oryza granulata. Tropical Plant Biology, 2011, 4, 217-227.	1.9	1
241	DNA and Chromatin Fiber-Based Plant Cytogenetics. , 2012, , 121-130.		1
242	Super-Stretched Pachytene Chromosomes for Plant Molecular Cytogenetic Mapping. Methods in Molecular Biology, 2011, 701, 239-245.	0.9	1
243	Keep Up with Critical Fields. , 2013, , 211-211.		O
244	Efficient Genome Editing in Potato Using a Hairy Root Transformation System. Springer Protocols, 2021, , 149-158.	0.3	0
245	Rapid Validation of Transcriptional Enhancers Using a Transient Reporter Assay. Methods in Molecular Biology, 2021, 2328, 253-259.	0.9	0
246	Molecular Integrated Cytogenetic Mapping. , 2004, , 1-3.		0