Marc C Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5473740/publications.pdf

Version: 2024-02-01

430874 302126 2,883 47 18 39 citations g-index h-index papers 59 59 59 3219 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Defining biological and biophysical properties of SARS-CoV-2 genetic material in wastewater. Science of the Total Environment, 2022, 807, 150786.	8.0	36
2	Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater. Nature Communications, 2022, 13, 635.	12.8	121
3	Novel Compound Inhibitors of HIV-1NL4-3 Vpu. Viruses, 2022, 14, 817.	3.3	2
4	Identification and quantification of bioactive compounds suppressing SARS-CoV-2 signals in wastewater-based epidemiology surveillance. Water Research, 2022, 221, 118824.	11.3	7
5	SARSâ€CoVâ€2 show no infectivity at later stages in a prolonged COVIDâ€19 patient despite positivity in RNA testing. Journal of Medical Virology, 2021, 93, 4570-4575.	5.0	7
6	Structure of the mature Rous sarcoma virus lattice reveals a role for IP6 in the formation of the capsid hexamer. Nature Communications, 2021, 12, 3226.	12.8	18
7	Monitoring SARS-CoV-2 Populations in Wastewater by Amplicon Sequencing and Using the Novel Program SAM Refiner. Viruses, 2021, 13, 1647.	3.3	32
8	An Infectious Rous Sarcoma Virus Gag Mutant That Is Defective in Nuclear Cycling. Journal of Virology, 2021, 95, e0064821.	3.4	1
9	Primate lentiviruses require Inositol hexakisphosphate (IP6) or inositol pentakisphosphate (IP5) for the production of viral particles. PLoS Pathogens, 2020, 16, e1008646.	4.7	20
10	Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. Journal of Virology, 2020, 94, .	3.4	116
11	Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. PLoS Pathogens, 2020, 16, e1008277.	4.7	44
12	Title is missing!. , 2020, 16, e1008646.		0
13	Title is missing!. , 2020, 16, e1008646.		0
14	Title is missing!. , 2020, 16, e1008646.		0
15	Title is missing!. , 2020, 16, e1008646.		О
16	Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. , 2020, 16, e1008277.		0
17	Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. , 2020, 16, e1008277.		0
18	Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. , 2020, 16, e1008277.		0

#	Article	IF	Citations
19	Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. , 2020, 16, e1008277.		O
20	Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. , 2020, 16, e1008277.		0
21	Diphtheria Toxin A-Resistant Cell Lines Enable Robust Production and Evaluation of DTA-Encoding Lentiviruses. Scientific Reports, 2019, 9, 8985.	3.3	11
22	Sequence Determinants in Gammaretroviral Env Cytoplasmic Tails Dictate Virus-Specific Pseudotyping Compatibility. Journal of Virology, 2019, 93, .	3.4	6
23	A lipid-based partitioning mechanism for selective incorporation of proteins into membranes of HIV particles. Nature Cell Biology, 2019, 21, 452-461.	10.3	97
24	î ² TrCP is Required for HIV-1 Vpu Modulation of CD4, GaLV Env, and BST-2/Tetherin. Viruses, 2018, 10, 573.	3.3	7
25	Inositol phosphates are assembly co-factors for HIV-1. Nature, 2018, 560, 509-512.	27.8	186
26	RNA–protein interactions govern antiviral specificity and encapsidation of broad spectrum anti-HIV reverse transcriptase aptamers. Nucleic Acids Research, 2017, 45, 6087-6097.	14.5	25
27	Sphingosine 1-Phosphate Lyase Enhances the Activation of IKKε To Promote Type I IFN–Mediated Innate Immune Responses to Influenza A Virus Infection. Journal of Immunology, 2017, 199, 677-687.	0.8	20
28	<i>In Vivo</i> Analysis of Infectivity, Fusogenicity, and Incorporation of a Mutagenic Viral Glycoprotein Library Reveals Determinants for Virus Incorporation. Journal of Virology, 2016, 90, 6502-6514.	3.4	6
29	DHX9/RHA Binding to the PBS-Segment of the Genomic RNA during HIV-1 Assembly Bolsters Virion Infectivity. Journal of Molecular Biology, 2016, 428, 2418-2429.	4.2	29
30	Characterizing the Murine Leukemia Virus Envelope Glycoprotein Membrane-Spanning Domain for Its Roles in Interface Alignment and Fusogenicity. Journal of Virology, 2015, 89, 12492-12500.	3.4	9
31	TIM-family proteins inhibit HIV-1 release. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3699-707.	7.1	68
32	Diverse viral glycoproteins as well as CD4 co-package into the same human immunodeficiency virus (HIV-1) particles. Retrovirology, 2014, 11, 28.	2.0	6
33	Multiple Gag Domains Contribute to Selective Recruitment of Murine Leukemia Virus (MLV) Env to MLV Virions. Journal of Virology, 2013, 87, 1518-1527.	3.4	11
34	Retrovirus Glycoprotein Functionality Requires Proper Alignment of the Ectodomain and the Membrane-Proximal Cytoplasmic Tail. Journal of Virology, 2013, 87, 12805-12813.	3.4	18
35	Functional Complementation of a Model Target to Study Vpu Sensitivity. PLoS ONE, 2013, 8, e68507.	2.5	2
36	Public engagement with scientists at the University of Missouri: Saturday Morning Science. FASEB Journal, 2013, 27, 29.4.	0.5	0

#	Article	IF	CITATIONS
37	CRM1-Dependent Trafficking of Retroviral Gag Proteins Revisited. Journal of Virology, 2012, 86, 4696-4700.	3.4	23
38	Vpu Downmodulates Two Distinct Targets, Tetherin and Gibbon Ape Leukemia Virus Envelope, through Shared Features in the Vpu Cytoplasmic Tail. PLoS ONE, 2012, 7, e51741.	2.5	4
39	Sequences in Gibbon Ape Leukemia Virus Envelope That Confer Sensitivity to HIV-1 Accessory Protein Vpu. Journal of Virology, 2011, 85, 11945-11954.	3.4	12
40	Mechanisms for Env Glycoprotein Acquisition by Retroviruses. AIDS Research and Human Retroviruses, 2011, 27, 239-247.	1.1	42
41	Two distinct mechanisms regulate recruitment of murine leukemia virus envelope protein to retroviral assembly sites. Virology, 2010, 405, 548-555.	2.4	19
42	Pseudotyping Incompatibility between HIV-1 and Gibbon Ape Leukemia Virus Env Is Modulated by Vpu. Journal of Virology, 2010, 84, 2666-2674.	3.4	17
43	Foreign Glycoproteins Can Be Actively Recruited to Virus Assembly Sites during Pseudotyping. Journal of Virology, 2009, 83, 4060-4067.	3.4	54
44	Tetherin Inhibits HIV-1 Release by Directly Tethering Virions to Cells. Cell, 2009, 139, 499-511.	28.9	517
45	The Interferon-Induced Protein BST-2 Restricts HIV-1 Release and Is Downregulated from the Cell Surface by the Viral Vpu Protein. Cell Host and Microbe, 2008, 3, 245-252.	11.0	922
46	Mutations in the Spacer Peptide and Adjoining Sequences in Rous Sarcoma Virus Gag Lead to Tubular Budding. Journal of Virology, 2008, 82, 6788-6797.	3.4	36
47	Plasma Membrane Is the Site of Productive HIV-1 Particle Assembly. PLoS Biology, 2006, 4, e435.	5.6	299