
Marc C Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5473740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Interferon-Induced Protein BST-2 Restricts HIV-1 Release and Is Downregulated from the Cell Surface by the Viral Vpu Protein. Cell Host and Microbe, 2008, 3, 245-252.	11.0	922
2	Tetherin Inhibits HIV-1 Release by Directly Tethering Virions to Cells. Cell, 2009, 139, 499-511.	28.9	517
3	Plasma Membrane Is the Site of Productive HIV-1 Particle Assembly. PLoS Biology, 2006, 4, e435.	5.6	299
4	Inositol phosphates are assembly co-factors for HIV-1. Nature, 2018, 560, 509-512.	27.8	186
5	Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater. Nature Communications, 2022, 13, 635.	12.8	121
6	Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. Journal of Virology, 2020, 94, .	3.4	116
7	A lipid-based partitioning mechanism for selective incorporation of proteins into membranes of HIV particles. Nature Cell Biology, 2019, 21, 452-461.	10.3	97
8	TIM-family proteins inhibit HIV-1 release. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3699-707.	7.1	68
9	Foreign Glycoproteins Can Be Actively Recruited to Virus Assembly Sites during Pseudotyping. Journal of Virology, 2009, 83, 4060-4067.	3.4	54
10	Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. PLoS Pathogens, 2020, 16, e1008277.	4.7	44
11	Mechanisms for Env Glycoprotein Acquisition by Retroviruses. AIDS Research and Human Retroviruses, 2011, 27, 239-247.	1.1	42
12	Mutations in the Spacer Peptide and Adjoining Sequences in Rous Sarcoma Virus Gag Lead to Tubular Budding. Journal of Virology, 2008, 82, 6788-6797.	3.4	36
13	Defining biological and biophysical properties of SARS-CoV-2 genetic material in wastewater. Science of the Total Environment, 2022, 807, 150786.	8.0	36
14	Monitoring SARS-CoV-2 Populations in Wastewater by Amplicon Sequencing and Using the Novel Program SAM Refiner. Viruses, 2021, 13, 1647.	3.3	32
15	DHX9/RHA Binding to the PBS-Segment of the Genomic RNA during HIV-1 Assembly Bolsters Virion Infectivity. Journal of Molecular Biology, 2016, 428, 2418-2429.	4.2	29
16	RNA–protein interactions govern antiviral specificity and encapsidation of broad spectrum anti-HIV reverse transcriptase aptamers. Nucleic Acids Research, 2017, 45, 6087-6097.	14.5	25
17	CRM1-Dependent Trafficking of Retroviral Gag Proteins Revisited. Journal of Virology, 2012, 86, 4696-4700.	3.4	23
18	Sphingosine 1-Phosphate Lyase Enhances the Activation of IKKε To Promote Type I IFN–Mediated Innate Immune Responses to Influenza A Virus Infection. Journal of Immunology, 2017, 199, 677-687.	0.8	20

Marc C Johnson

#	Article	IF	CITATIONS
19	Primate lentiviruses require Inositol hexakisphosphate (IP6) or inositol pentakisphosphate (IP5) for the production of viral particles. PLoS Pathogens, 2020, 16, e1008646.	4.7	20
20	Two distinct mechanisms regulate recruitment of murine leukemia virus envelope protein to retroviral assembly sites. Virology, 2010, 405, 548-555.	2.4	19
21	Retrovirus Glycoprotein Functionality Requires Proper Alignment of the Ectodomain and the Membrane-Proximal Cytoplasmic Tail. Journal of Virology, 2013, 87, 12805-12813.	3.4	18
22	Structure of the mature Rous sarcoma virus lattice reveals a role for IP6 in the formation of the capsid hexamer. Nature Communications, 2021, 12, 3226.	12.8	18
23	Pseudotyping Incompatibility between HIV-1 and Gibbon Ape Leukemia Virus Env Is Modulated by Vpu. Journal of Virology, 2010, 84, 2666-2674.	3.4	17
24	Sequences in Gibbon Ape Leukemia Virus Envelope That Confer Sensitivity to HIV-1 Accessory Protein Vpu. Journal of Virology, 2011, 85, 11945-11954.	3.4	12
25	Multiple Gag Domains Contribute to Selective Recruitment of Murine Leukemia Virus (MLV) Env to MLV Virions. Journal of Virology, 2013, 87, 1518-1527.	3.4	11
26	Diphtheria Toxin A-Resistant Cell Lines Enable Robust Production and Evaluation of DTA-Encoding Lentiviruses. Scientific Reports, 2019, 9, 8985.	3.3	11
27	Characterizing the Murine Leukemia Virus Envelope Glycoprotein Membrane-Spanning Domain for Its Roles in Interface Alignment and Fusogenicity. Journal of Virology, 2015, 89, 12492-12500.	3.4	9
28	βTrCP is Required for HIV-1 Vpu Modulation of CD4, GaLV Env, and BST-2/Tetherin. Viruses, 2018, 10, 573.	3.3	7
29	SARSâ€CoVâ€2 show no infectivity at later stages in a prolonged COVIDâ€19 patient despite positivity in RNA testing. Journal of Medical Virology, 2021, 93, 4570-4575.	5.0	7
30	Identification and quantification of bioactive compounds suppressing SARS-CoV-2 signals in wastewater-based epidemiology surveillance. Water Research, 2022, 221, 118824.	11.3	7
31	Diverse viral glycoproteins as well as CD4 co-package into the same human immunodeficiency virus (HIV-1) particles. Retrovirology, 2014, 11, 28.	2.0	6
32	<i>In Vivo</i> Analysis of Infectivity, Fusogenicity, and Incorporation of a Mutagenic Viral Glycoprotein Library Reveals Determinants for Virus Incorporation. Journal of Virology, 2016, 90, 6502-6514.	3.4	6
33	Sequence Determinants in Gammaretroviral Env Cytoplasmic Tails Dictate Virus-Specific Pseudotyping Compatibility. Journal of Virology, 2019, 93, .	3.4	6
34	Vpu Downmodulates Two Distinct Targets, Tetherin and Gibbon Ape Leukemia Virus Envelope, through Shared Features in the Vpu Cytoplasmic Tail. PLoS ONE, 2012, 7, e51741.	2.5	4
35	Functional Complementation of a Model Target to Study Vpu Sensitivity. PLoS ONE, 2013, 8, e68507.	2.5	2
36	Novel Compound Inhibitors of HIV-1NL4-3 Vpu. Viruses, 2022, 14, 817.	3.3	2

MARC C JOHNSON

#	Article	IF	CITATIONS
37	An Infectious Rous Sarcoma Virus Gag Mutant That Is Defective in Nuclear Cycling. Journal of Virology, 2021, 95, e0064821.	3.4	1
38	Public engagement with scientists at the University of Missouri: Saturday Morning Science. FASEB Journal, 2013, 27, 29.4.	0.5	0
39	Title is missing!. , 2020, 16, e1008646.		Ο
40	Title is missing!. , 2020, 16, e1008646.		0
41	Title is missing!. , 2020, 16, e1008646.		Ο
42	Title is missing!. , 2020, 16, e1008646.		0
43	Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. , 2020, 16, e1008277.		Ο
44	Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. , 2020, 16, e1008277.		0
45	Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. , 2020, 16, e1008277.		Ο
46	Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. , 2020, 16, e1008277.		0
47	Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. , 2020,		0