
Lawrence Fong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5472202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554, 544-548.	27.8	3,359
2	Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. New England Journal of Medicine, 2017, 376, 1015-1026.	27.0	2,677
3	Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nature Medicine, 2018, 24, 749-757.	30.7	900
4	Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell, 2019, 177, 414-427.e13.	28.9	847
5	Systemic Immunity Is Required for Effective Cancer Immunotherapy. Cell, 2017, 168, 487-502.e15.	28.9	708
6	Dendritic Cells in Cancer Immunotherapy. Annual Review of Immunology, 2000, 18, 245-273.	21.8	625
7	Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell, 2018, 174, 758-769.e9.	28.9	459
8	Intratumoral CD4+ T Cells Mediate Anti-tumor Cytotoxicity in Human Bladder Cancer. Cell, 2020, 181, 1612-1625.e13.	28.9	436
9	A Pilot Trial of CTLA-4 Blockade with Human Anti-CTLA-4 in Patients with Hormone-Refractory Prostate Cancer. Clinical Cancer Research, 2007, 13, 1810-1815.	7.0	385
10	Improved Survival with T Cell Clonotype Stability After Anti–CTLA-4 Treatment in Cancer Patients. Science Translational Medicine, 2014, 6, 238ra70.	12.4	348
11	Anti–Cytotoxic T-Lymphocyte Antigen-4 Antibody: The First in an Emerging Class of Immunomodulatory Antibodies for Cancer Treatment. Journal of Clinical Oncology, 2008, 26, 5275-5283.	1.6	294
12	Tissue Determinants of Human NK Cell Development, Function, and Residence. Cell, 2020, 180, 749-763.e13.	28.9	242
13	Potentiating Endogenous Antitumor Immunity to Prostate Cancer through Combination Immunotherapy with CTLA4 Blockade and GM-CSF. Cancer Research, 2009, 69, 609-615.	0.9	238
14	Dendritic Cell-Based Xenoantigen Vaccination for Prostate Cancer Immunotherapy. Journal of Immunology, 2001, 167, 7150-7156.	0.8	236
15	CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion. Blood, 2008, 112, 1175-1183.	1.4	217
16	Targeting EZH2 Reprograms Intratumoral Regulatory T Cells to Enhance Cancer Immunity. Cell Reports, 2018, 23, 3262-3274.	6.4	207
17	Immune Toxicities Elicted by CTLA-4 Blockade in Cancer Patients Are Associated with Early Diversification of the T-cell Repertoire. Cancer Research, 2017, 77, 1322-1330.	0.9	188
18	Cytotoxic CD4+ TÂcells in cancer: Expanding the immune effector toolbox. Immunity, 2021, 54, 2701-2711.	14.3	170

LAWRENCE FONG

#	Article	IF	CITATIONS
19	Activated Lymphocyte Recruitment Into the Tumor Microenvironment Following Preoperative Sipuleucel-T for Localized Prostate Cancer. Journal of the National Cancer Institute, 2014, 106, .	6.3	163
20	Immunotherapy in hepatocellular carcinoma: the complex interface between inflammation, fibrosis, and the immune response. , 2019, 7, 267.		156
21	Single-cell RNA-seq reveals cell type–specific molecular and genetic associations to lupus. Science, 2022, 376, eabf1970.	12.6	156
22	The Immune Landscape of Prostate Cancer and Nomination of PD-L2 as a Potential Therapeutic Target. Journal of the National Cancer Institute, 2019, 111, 301-310.	6.3	142
23	Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Cancer, 2006, 107, 67-74.	4.1	119
24	Productive Infection of Plasmacytoid Dendritic Cells with Human Immunodeficiency Virus Type 1 Is Triggered by CD40 Ligation. Journal of Virology, 2002, 76, 11033-11041.	3.4	107
25	Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity. Journal of Clinical Investigation, 2018, 129, 349-363.	8.2	99
26	Health-Related Quality-of-Life Analysis From KEYNOTE-045: A Phase III Study of Pembrolizumab Versus Chemotherapy for Previously Treated Advanced Urothelial Cancer. Journal of Clinical Oncology, 2018, 36, 1579-1587.	1.6	97
27	Clonal Deletion of Tumor-Specific T Cells by Interferon- $\hat{1}^3$ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade. Immunity, 2019, 50, 477-492.e8.	14.3	93
28	How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 697-717.	3.9	93
29	Differentiation of myeloid dendritic cells into CD8α-positive dendritic cells in vivo. Blood, 2000, 96, 1865-1872.	1.4	92
30	Transcriptional mediators of treatment resistance in lethal prostate cancer. Nature Medicine, 2021, 27, 426-433.	30.7	90
31	Androgen conspires with the CD8 ⁺ T cell exhaustion program and contributes to sex bias in cancer. Science Immunology, 2022, 7, .	11.9	74
32	Effects of RANKL-Targeted Therapy in Immunity and Cancer. Frontiers in Oncology, 2014, 3, 329.	2.8	69
33	A Randomized Phase II Trial of Sipuleucel-T with Concurrent versus Sequential Abiraterone Acetate plus Prednisone in Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2015, 21, 3862-3869.	7.0	67
34	Diversity of Antigen-Specific Responses Induced In Vivo with CTLA-4 Blockade in Prostate Cancer Patients. Journal of Immunology, 2012, 189, 3759-3766.	0.8	66
35	Clonotypic Diversification of Intratumoral T Cells Following Sipuleucel-T Treatment in Prostate Cancer Subjects. Cancer Research, 2016, 76, 3711-3718.	0.9	63
36	Intratumoral Plasmid IL12 Electroporation Therapy in Patients with Advanced Melanoma Induces Systemic and Intratumoral T-cell Responses. Cancer Immunology Research, 2020, 8, 246-254.	3.4	61

LAWRENCE FONG

#	Article	IF	CITATIONS
37	Unmasking the immune recognition of prostate cancer with CTLA4 blockade. Nature Reviews Cancer, 2012, 12, 289-297.	28.4	54
38	Next steps for clinical translation of adenosine pathway inhibition in cancer immunotherapy. , 2022, 10, e004089.		50
39	Preexisting Levels of CD4 T Cells Expressing PD-1 Are Related to Overall Survival in Prostate Cancer Patients Treated with Ipilimumab. Cancer Immunology Research, 2015, 3, 1008-1016.	3.4	49
40	SPAS-1 (stimulator of prostatic adenocarcinoma-specific T cells)/SH3GLB2: A prostate tumor antigen identified by CTLA-4 blockade. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3509-3514.	7.1	46
41	Single-cell RNA sequencing reveals gene expression signatures of breast cancer-associated endothelial cells. Oncotarget, 2018, 9, 10945-10961.	1.8	45
42	Putting the Pieces Together: Completing the Mechanism of Action Jigsaw for Sipuleucel-T. Journal of the National Cancer Institute, 2020, 112, 562-573.	6.3	45
43	Deep immune profiling reveals targetable mechanisms of immune evasion in immune checkpoint inhibitor-refractory glioblastoma. , 2021, 9, e002181.		42
44	Immunotherapy for Prostate Cancer: Biology and Therapeutic Approaches. Journal of Clinical Oncology, 2011, 29, 3677-3685.	1.6	41
45	3D: diversity, dynamics, differential testing – a proposed pipeline for analysis of next-generation sequencing T cell repertoire data. BMC Bioinformatics, 2017, 18, 129.	2.6	38
46	Combination central tolerance and peripheral checkpoint blockade unleashes antimelanoma immunity. JCI Insight, 2017, 2, .	5.0	34
47	Clinical and Immunological Characteristics of Patients With Serologic Progression of Prostate Cancer Achieving Long-Term Disease Control With Granulocyte-Macrophage Colony-Stimulating Factor. Journal of Urology, 2006, 175, 2087-2091.	0.4	33
48	Prostate Cancer Immunotherapy with Sipuleucel-T: Current Standards and Future Directions. Expert Review of Vaccines, 2015, 14, 1529-1541.	4.4	33
49	TCR Convergence in Individuals Treated With Immune Checkpoint Inhibition for Cancer. Frontiers in Immunology, 2019, 10, 2985.	4.8	33
50	Immunotherapy for prostate cancer. Seminars in Oncology, 2003, 30, 649-658.	2.2	32
51	The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma. , 2016, 4, 92.		31
52	In Vivo Measurement of Granzyme Proteolysis from Activated Immune Cells with PET. ACS Central Science, 2021, 7, 1638-1649.	11.3	30
53	Neoadjuvant sipuleucel-T induces both Th1 activation and immune regulation in localized prostate cancer. Oncolmmunology, 2019, 8, e1486953.	4.6	27
54	Neoadjuvant therapy for localized prostate cancer: Examining mechanism of action and efficacy within the tumor. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 182-192.	1.6	26

LAWRENCE FONG

#	Article	IF	CITATIONS
55	GM-CSF and ipilimumab therapy in metastatic melanoma: Clinical outcomes and immunologic responses. Oncolmmunology, 2016, 5, e1101204.	4.6	26
56	Systemic GM-CSF Recruits Effector T Cells into the Tumor Microenvironment in Localized Prostate Cancer. Cancer Immunology Research, 2016, 4, 948-958.	3.4	26
57	A Phase II Trial of Selinexor, an Oral Selective Inhibitor of Nuclear Export Compound, in Abiraterone- and/or Enzalutamide-Refractory Metastatic Castration-Resistant Prostate Cancer. Oncologist, 2018, 23, 656-e64.	3.7	25
58	Phase I study of ABBV-428, a mesothelin-CD40 bispecific, in patients with advanced solid tumors. , 2021, 9, e002015.		23
59	Non-radioactive and sensitive tracking of neutrophils towards inflammation using antibody functionalized magnetic particle imaging tracers. Nanotheranostics, 2021, 5, 240-255.	5.2	23
60	Attenuating CD3 affinity in a PSMAxCD3 bispecific antibody enables killing of prostate tumor cells with reduced cytokine release. , 2021, 9, e002488.		22
61	A Phase Ib Study of Atezolizumab with Radium-223 Dichloride in Men with Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2021, 27, 4746-4756.	7.0	22
62	Pre-existing immune status associated with response to combination of sipuleucel-T and ipilimumab in patients with metastatic castration-resistant prostate cancer. , 2021, 9, e002254.		21
63	Adenosine receptor blockade with ciforadenant +/- atezolizumab in advanced metastatic castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2020, 38, 129-129.	1.6	21
64	Putative Biomarkers of Clinical Benefit With Pembrolizumab in Advanced Urothelial Cancer: Results from the KEYNOTE-045 and KEYNOTE-052 Landmark Trials. Clinical Cancer Research, 2022, 28, 2050-2060.	7.0	21
65	Interplay between CD8α+ Dendritic Cells and Monocytes in Response to Listeria monocytogenes Infection Attenuates T Cell Responses. PLoS ONE, 2011, 6, e19376.	2.5	20
66	Efficacy and Safety of Atezolizumab Plus Bevacizumab Following Disease Progression on Atezolizumab or Sunitinib Monotherapy in Patients with Metastatic Renal Cell Carcinoma in IMmotion150: A Randomized Phase 2 Clinical Trial. European Urology, 2021, 79, 665-673.	1.9	20
67	Patientâ€reported outcomes in a phase 2 study comparing atezolizumab alone or with bevacizumab vs sunitinib in previously untreated metastatic renal cell carcinoma. BJU International, 2020, 126, 73-82.	2.5	19
68	Immune Checkpoint Blockade for Prostate Cancer: Niche Role or Next Breakthrough?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e89-e106.	3.8	17
69	Early changes in the circulating T cells are associated with clinical outcomes after PD-L1 blockade by durvalumab in advanced NSCLC patients. Cancer Immunology, Immunotherapy, 2021, 70, 2095-2102.	4.2	17
70	Beyond Sipuleucel-T: Immune Approaches to Treating Prostate Cancer. Current Treatment Options in Oncology, 2014, 15, 115-126.	3.0	13
71	Clinical Variables Associated With Overall Survival in Metastatic Castration-Resistant Prostate Cancer Patients Treated With Sipuleucel-T Immunotherapy. Clinical Genitourinary Cancer, 2018, 16, 184-190.e2.	1.9	13
72	Cross-platform comparison of immune-related gene expression to assess intratumor immune responses following cancer immunotherapy. Journal of Immunological Methods, 2021, 494, 113041.	1.4	13

#	Article	IF	CITATIONS
73	Multi-Immune Agonist Nanoparticle Therapy Stimulates Type I Interferons to Activate Antigen-Presenting Cells and Induce Antigen-Specific Antitumor Immunity. Molecular Pharmaceutics, 2021, 18, 1014-1025.	4.6	12
74	Safety and preliminary immunogenicity of JNJ-64041809, a live-attenuated, double-deleted Listeria monocytogenes-based immunotherapy, in metastatic castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2022, 25, 219-228.	3.9	12
75	ADXS31142 Immunotherapy ± Pembrolizumab Treatment for Metastatic Castration-Resistant Prostate Cancer: Open-Label Phase I/II KEYNOTE-046 Study. Oncologist, 2022, 27, 453-461.	3.7	12
76	Long-term Sculpting of the B-cell Repertoire following Cancer Immunotherapy in Patients Treated with Sipuleucel-T. Cancer Immunology Research, 2020, 8, 1496-1507.	3.4	11
77	An Analysis of Isoclonal Antibody Formats Suggests a Role for Measuring PD-L1 with Low Molecular Weight PET Radiotracers. Molecular Imaging and Biology, 2020, 22, 1553-1561.	2.6	11
78	Phase II Study of Ipilimumab in Men With Metastatic Prostate Cancer With an Incomplete Response to Androgen Deprivation Therapy. Frontiers in Oncology, 2020, 10, 1381.	2.8	10
79	On the Verge: Immunotherapy for Colorectal Carcinoma. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 970-978.	4.9	9
80	Immune Checkpoint Inhibition in Prostate Cancer. Trends in Cancer, 2020, 6, 174-177.	7.4	9
81	Tumor morphology and location associate with immune cell composition in pleomorphic sarcoma. Cancer Immunology, Immunotherapy, 2021, 70, 3031-3040.	4.2	9
82	A Phase Ib/II Study of the CDK4/6 Inhibitor Ribociclib in Combination with Docetaxel plus Prednisone in Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2022, 28, 1531-1539.	7.0	9
83	Combination immunotherapy induces distinct T-cell repertoire responses when administered to patients with different malignancies. , 2020, 8, e000368.		8
84	Differentiation of myeloid dendritic cells into CD8α-positive dendritic cells in vivo. Blood, 2000, 96, 1865-1872.	1.4	8
85	Cancer Moonshot Immuno-Oncology Translational Network (IOTN): accelerating the clinical translation of basic discoveries for improving immunotherapy and immunoprevention of cancer. , 2020, 8, e000796.		7
86	Immunotherapy in genitourinary malignancies. Current Opinion in Urology, 2016, 26, 501-507.	1.8	6
87	Can Prostate Cancer Really Respond to Immunotherapy?. Journal of Clinical Oncology, 2017, 35, 4-5.	1.6	6
88	Prospects for the use of ipilimumab in treating advanced prostate cancer. Expert Opinion on Biological Therapy, 2016, 16, 421-432.	3.1	5
89	Agonizing over the Stimulatory Immune Checkpoint ICOS. Clinical Cancer Research, 2022, 28, 3633-3635.	7.0	4
90	Shuffling the deck with CTLA-4 therapy: Deep sequencing of rearranged TCRB genes demonstrates T cell repertoire remodeling in cancer patients. Oncolmmunology, 2018, 7, e956016.	4.6	3

#	Article	IF	CITATIONS
91	Conditional Cancer Immunotherapy as a Safer Way to Step on the Gas. Cancer Discovery, 2021, 11, 20-22.	9.4	3
92	A multidisciplinary team-based approach with lifestyle modification and symptom management to address the impact of androgen deprivation therapy in prostate cancer: A randomized phase II study. Urologic Oncology: Seminars and Original Investigations, 2021, 39, 730.e9-730.e15.	1.6	2
93	Immunity in the Time of Metastases. Immunity, 2018, 49, 1002-1003.	14.3	1