
Mitchell R M Bruce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5472175/publications.pdf Version: 2024-02-01

MITCHELL R M RRUCE

#	Article	IF	CITATIONS
1	Creating Representation in Support of Chemical Reasoning to Connect Macroscopic and Submicroscopic Domains of Knowledge. Journal of Chemical Education, 2022, 99, 1734-1746.	2.3	5
2	Conceptual Developments of Aryldiazonium Salts as Modifiers for Gold Colloids and Surfaces. Langmuir, 2021, 37, 8897-8907.	3.5	17
3	Designing a Remote, Synchronous, Hands-On General Chemistry Lab Course. Journal of Chemical Education, 2021, 98, 3131-3142.	2.3	10
4	A Professional Development Activity to Help Teaching Assistants Work as a Team to Assess Lab Reports in a General Chemistry Course. Israel Journal of Chemistry, 2019, 59, 536-545.	2.3	6
5	Synthesis of water-soluble gold–aryl nanoparticles with distinct catalytic performance in the reduction of the environmental pollutant 4-nitrophenol. Catalysis Science and Technology, 2019, 9, 6059-6071.	4.1	29
6	Polymers and Cross-Linking: A CORE Experiment To Help Students Think on the Submicroscopic Level. Journal of Chemical Education, 2016, 93, 1599-1605.	2.3	5
7	A Simple, Student-Built Spectrometer To Explore Infrared Radiation and Greenhouse Gases. Journal of Chemical Education, 2016, 93, 1908-1915.	2.3	9
8	The influence of gold(<scp>i</scp>) on the mechanism of thiolate, disulfide exchange. Dalton Transactions, 2016, 45, 11261-11266.	3.3	5
9	Disulfide Competition for Phosphine Gold(I) Thiolates: Phosphine Oxide Formation vs. Thiolate Disulfide Exchange. Inorganics, 2015, 3, 40-54.	2.7	6
10	The influence of zinc(ii) on thioredoxin/glutathione disulfide exchange: QM/MM studies to explore how zinc(ii) accelerates exchange in higher dielectric environments. Metallomics, 2015, 7, 1265-1273.	2.4	3
11	Paying Attention to Gesture when Students Talk Chemistry: Interactional Resources for Responsive Teaching. Journal of Chemical Education, 2015, 92, 11-22.	2.3	43
12	Identification of dimethyl sulfide in dimethyl sulfoxide and implications for metal-thiolate disulfide exchange reactions. RSC Advances, 2015, 5, 40603-40606.	3.6	7
13	Students' Understanding of Analogy after a CORE (Chemical Observations, Representations,) Tj ETQq1 1 0. 92, 1626-1638.	784314 rgB 2.3	BT /Overlock 18
14	An infrared spectroscopic based method for mercury(II) detection in aqueous solutions. Analytica Chimica Acta, 2012, 728, 57-63.	5.4	14
15	Electrochemical polymerization of aniline on carbon–aluminum electrodes for energy storage. Journal of Power Sources, 2012, 219, 285-291.	7.8	7
16	Application of structural analogs of dimercaptosuccinic acid-functionalized silica nanoparticles (DMSA-[silica]) to adsorption of mercury, cadmium, and lead. Research on Chemical Intermediates, 2011, 37, 791-810.	2.7	12
17	Synthesis, crystal and molecular structure of gold(I) thiophenolate with 4′-ferrocenyl[1,1′]biphenylisocyanides. Journal of Organometallic Chemistry, 2010, 695, 304-309.	1.8	5
18	The synthesis of triethylphosphine gold(I) 4-nitrobenzenethiolate and solvent dependent visible absorption spectra of 4-nitrobenzenethiolate. Inorganica Chimica Acta, 2010, 363, 279-282.	2.4	2

MITCHELL R M BRUCE

#	Article	IF	CITATIONS
19	Preferential adsorption of mercury(II) ions in water: chelation of mercury, cadmium, and lead ions to silica derivatized with meso-2,3-dimercaptosuccinic acid. Journal of Coordination Chemistry, 2010, 63, 731-741.	2.2	11
20	Luminescence, structural, and bonding trends upon varying the halogen in isostructural aurophilic dimers. Dalton Transactions, 2009, , 1522-1533.	3.3	26
21	Structure and Photochemical Isomerization of the Dinuclear Gold(I) Halide Bis(diphenylphosphanyl)ethylene Complexes: Correlation Between Quantum Yield and Aurophilicity. European Journal of Inorganic Chemistry, 2007, 2007, 4946-4951.	2.0	15
22	InterChemNet: Integrating Instrumentation, Management, and Assessment in the General Chemistry Laboratory Course. Journal of Chemical Education, 2006, 83, 494.	2.3	11
23	Thermotropic liquid crystals based on ferrocenylbiphenyl and ferrocenylterphenyl. Liquid Crystals, 2006, 33, 485-494.	2.2	7
24	Novel metallamacrocyclic gold(i) thiolate cluster complex: structure and luminescence of [Au9(μ-dppm)4(μ-p-tc)6](PF6)3. Chemical Communications, 2005, , 1575-1577.	4.1	49
25	μ-Biphenyl-2,2â€2-dithiolato-κ2S:Sâ€2-bis[(triphenylphosphine-κP)gold(I)]. Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, m440-m442.	0.4	1
26	Syntheses and crystal structures of ferrocenyl derivatives of biphenyl. Russian Chemical Bulletin, 2003, 52, 607-615.	1.5	8
27	[μ-o-Phenylenebis(diphenylphosphine)-κ2P:Pâ€2]bis[chlorogold(I)], dppbz(AuCl)2. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, m84-m86.	0.4	18
28	Formation of a Cationic Gold(I) Complex and Disulfide by Oxidation of the Antiarthritic Gold Drug Auranofin. Inorganic Chemistry, 2003, 42, 2203-2205.	4.0	43
29	Perspectives in Inorganic and Bioinorganic Gold Sulfur Chemistry. Comments on Inorganic Chemistry, 2002, 23, 321-334.	5.2	24
30	Formation of separated versus contact ion pairs in alkali metal thiolates and selenolates. Dalton Transactions RSC, 2000, , 2167-2173.	2.3	14
31	Reactions of Organic Disulfides and Gold(I) Complexes. Metal-Based Drugs, 1999, 6, 247-253.	3.8	8
32	Cyclic Voltammetry of Auranofin. Metal-Based Drugs, 1999, 6, 233-238.	3.8	18
33	Electronic Structure of Dinuclear Gold(I) Complexes. Metal-Based Drugs, 1999, 6, 255-260.	3.8	1
34	Stripping Analyses of Mercury Using Gold Electrodes:Â Irreversible Adsorption of Mercury. Analytical Chemistry, 1999, 71, 3181-3186.	6.5	64
35	Electrochemical and Chemical Oxidation of Gold(I) Thiolate Phosphine Complexes:Â Formation of Gold Clusters and Disulfide. Journal of the American Chemical Society, 1999, 121, 9225-9226.	13.7	40
36	Theoretical Studies on the Photochemistry of the Cis-to-Trans Conversion in Dinuclear Gold Halide Bis(diphenylphosphino)ethylene Complexesâ€. Journal of the American Chemical Society, 1998, 120, 6587-6597.	13.7	74

MITCHELL R M BRUCE

#	Article	IF	CITATIONS
37	Electrochemical piezoelectric sensors for trace ionic contaminants. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45, 1408-1415.	3.0	4
38	<title>Heavy metal detection combining stripping electrochemistry and piezoelectric sensor technology</title> . , 1998, , .		2
39	Solid State EXAFS and Luminescence Studies of Neutral, Dinuclear Gold(I) Complexes. Gold(I)-Gold(I) Interactions in the Solid State. Inorganic Chemistry, 1995, 34, 1996-2001.	4.0	145
40	An Unprecedented Photochemical Cis to Trans Isomerization of Dinuclear Gold(I) Bis(diphenylphosphino)ethylene Complexes. Journal of the American Chemical Society, 1995, 117, 9596-9597.	13.7	25
41	Redox Chemistry of Gold(I) Phosphine Thiolates: Sulfur-Based Oxidation. Metal-Based Drugs, 1994, 1, 419-431.	3.8	9
42	Electronic and Steric Effects in Gold(I) Phosphine Thiolate Complexes. Metal-Based Drugs, 1994, 1, 405-417.	3.8	3
43	Insight into formation and reactivity of molybdenum(0) bent nitrenes. Crystal structure of a phosphine-phosphoranimine chelate. Inorganic Chemistry, 1993, 32, 2202-2206.	4.0	23
44	Synthesis, structure, and electronic spectroscopy of neutral, dinuclear gold(I) complexes. Gold(I)-gold(I) interactions in solution and in the solid state. Inorganic Chemistry, 1993, 32, 2506-2517.	4.0	204
45	Solvent effects on electron delocalization in paramagnetic organometallic complexes: solvent manipulation of the amount of 19-electron character in Co(CO)3L2 (L2 = a chelating phosphine). Journal of the American Chemical Society, 1992, 114, 6418-6424.	13.7	33
46	Reactions of molybdenum(0) tricarbonyl complexes with 8-azidoquinoline. Crystal structure of the phosphinimine complex Mo(CO)4[N(PPh3)(C9H6N)] and evidence for a bent nitrene. Inorganic Chemistry, 1991, 30, 3241-3243.	4.0	18
47	Descriptive photochemistry and electronic structure bis(cyclopentadienyl)oxomolybdenum and bis(methylcyclopentadienyl)oxomolybdenum complexes. Inorganic Chemistry, 1988, 27, 4669-4676.	4.0	20
48	Photochemical consequences of the manipulation of the lowest energy excited states by substitution of the Cp (Cp = .eta.5-cyclopentadienyl) ligands in titanium Cp2TiX2 (X = Br, I) complexes. Inorganic Chemistry, 1986, 25, 2546-2549.	4.0	31
49	Self-consistent-field-Xα-scattered-wave molecular orbital calculation of [CpMoS(μ-S)]2, a molecule that undergoes a photochemically induced isomerization. Polyhedron, 1985, 4, 2073-2081.	2.2	4
50	Electronic structure and photochemistry of the (.eta.5-C5H5)2Til2 complex. Organometallics, 1985, 4, 528-533.	2.3	25
51	Photochemistry and electronic structure of the bis(.eta.5-cyclopentadienyl)titanium sulfide [(.eta.5-C5H5)2TiS5] complex. Journal of the American Chemical Society, 1984, 106, 6660-6664.	13.7	10
52	Photochemistry and electronic structure of the (.eta.5-C5H5)2MoS2 complex. Organometallics, 1984, 3, 1610-1614.	2.3	8
53	Electronic structures of the (.eta.5-C5H5)2TiL2 complexes (L = fluorine, chlorine, bromine, iodine, and) Tj ETQq1	1 0,7843 13.7	14 rgBT /Ove