Allen M Shapiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5471033/publications.pdf Version: 2024-02-01

ALLEN M SHADDO

#	Article	IF	CITATIONS
1	Contributing Areas to Domestic Wells in Dipping Sedimentary Rocks under Extreme Recharge Events. Ground Water, 2022, , .	1.3	2
2	Reframing groundwater hydrology as a <scp>dataâ€driven</scp> science. Ground Water, 2022, 60, 455-456.	1.3	6
3	Incorporating Snowmelt into Daily Estimates of Recharge Using a <scp>Stateâ€Space</scp> Model of Infiltration. Ground Water, 2022, 60, 721-746.	1.3	4
4	Application of Recursive Estimation to Heat Tracing for Groundwater/Surfaceâ€Water Exchange. Water Resources Research, 2022, 58, .	4.2	10
5	Estimating and Forecasting Timeâ€Varying Groundwater Recharge in Fractured Rock: A State‧pace Formulation With Preferential and Diffuse Flow to the Water Table. Water Resources Research, 2021, 57, e2020WR029110.	4.2	6
6	The complex spatial distribution of trichloroethene and the probability of NAPL occurrence in the rock matrix of a mudstone aquifer. Journal of Contaminant Hydrology, 2019, 223, 103478.	3.3	2
7	Bioremediation in Fractured Rock: 1. Modeling to Inform Design, Monitoring, and Expectations. Ground Water, 2018, 56, 300-316.	1.3	12
8	Bioremediation in Fractured Rock: 2. Mobilization of Chloroethene Compounds from the Rock Matrix. Ground Water, 2018, 56, 317-336.	1.3	15
9	Variability of organic carbon content and the retention and release of trichloroethene in the rock matrix of a mudstone aquifer. Journal of Contaminant Hydrology, 2018, 217, 32-42.	3.3	3
10	Porosity and pore size distribution in a sedimentary rock: Implications for the distribution of chlorinated solvents. Journal of Contaminant Hydrology, 2017, 203, 70-84.	3.3	19
11	Imaging Pathways in Fractured Rock Using Threeâ€Ðimensional Electrical Resistivity Tomography. Ground Water, 2016, 54, 186-201.	1.3	28
12	Interpretation of hydraulic conductivity in a fractured-rock aquifer over increasingly larger length dimensions. Hydrogeology Journal, 2015, 23, 1319-1339.	2.1	12
13	Integration of stable carbon isotope, microbial community, dissolved hydrogen gas, and 2HH2O tracer data to assess bioaugmentation for chlorinated ethene degradation in fractured rocks. Journal of Contaminant Hydrology, 2014, 156, 62-77.	3.3	25
14	The challenge of interpreting environmental tracer concentrations in fractured rock and carbonate aquifers. Hydrogeology Journal, 2011, 19, 9-12.	2.1	10
15	Effects of simplifying fracture network representation on inert chemical migration in fractureâ€controlled aquifers. Water Resources Research, 2009, 45, .	4.2	36
16	In situ estimation of the effective chemical diffusion coefficient of a rock matrix in a fractured aquifer. Hydrogeology Journal, 2008, 16, 629-639.	2.1	4
17	Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 1. Revised conceptualization of groundwater flow. Water Resources Research, 2008, 44, .	4.2	32
18	Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 2. Chemical retention from diffusion and slow advection. Water Resources Research, 2008, 44, .	4.2	23

#	Article	IF	CITATIONS
19	Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 3. Use of microspheres to estimate the transport potential of <i>Cryptosporidium parvum</i> oocysts. Water Resources Research, 2008, 44, .	4.2	36
20	Integrated multi-scale characterization of ground-water flow and chemical transport in fractured crystalline rock at the Mirror Lake Site, New Hampshire. Geophysical Monograph Series, 2007, , 201-225.	0.1	24
21	Publishing Our "Ugly Babies― Ground Water, 2007, 45, 655-655.	1.3	1
22	Application of carbonate cyclostratigraphy and borehole geophysics to delineate porosity and preferential flow in the karst limestone of the Biscayne aquifer, SE Florida. , 2006, , .		27
23	Assessing the Vulnerability of a Municipal Well Field to Contamination in a Karst Aquifer. Environmental and Engineering Geoscience, 2005, 11, 319-331.	0.9	61
24	Radon (222Rn) in Ground Water of Fractured Rocks: A Diffusion/Ion Exchange Model. Ground Water, 2004, 42, 552-567.	1.3	28
25	Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater. Journal of Contaminant Hydrology, 2004, 69, 195-213.	3.3	64
26	Bacterial Transport Experiments in Fractured Crystalline Bedrock. Ground Water, 2003, 41, 682-689.	1.3	70
27	Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock. Water Resources Research, 2003, 39, .	4.2	136
28	Crosswell seismic investigation of hydraulically conductive, fractured bedrock near Mirror Lake, New Hampshire. Journal of Applied Geophysics, 2002, 50, 299-317.	2.1	34
29	Cautions and Suggestions for Geochemical Sampling in Fractured Rock. Ground Water Monitoring and Remediation, 2002, 22, 151-164.	0.8	45
30	Effective matrix diffusion in kilometer-scale transport in fractured crystalline rock. Water Resources Research, 2001, 37, 507-522.	4.2	121
31	Estimating formation properties from early-time oscillatory water levels in a pumped well. Journal of Hydrology, 2000, 236, 91-108.	5.4	5
32	Tracer transport in fractured crystalline rock: Evidence of nondiffusive breakthrough tailing. Water Resources Research, 2000, 36, 1677-1686.	4.2	259
33	Movement of Road Salt to a Small New Hampshire Lake. Water, Air, and Soil Pollution, 1999, 109, 179-206.	2.4	68
34	How Good Are Estimates of Transmissivity from Slug Tests in Fractured Rock?. Ground Water, 1998, 36, 37-48.	1.3	73
35	AIRSLUG: A Fortran Program for the Computation of Type Curves to Estimate Transmissivity and Storativity from Prematurely Terminated Air-Pressurized Slug Tests. Ground Water, 1998, 36, 373-376.	1.3	3
36	Estimating formation properties from early-time recovery in wells subject to turbulent head losses. Journal of Hydrology, 1998, 208, 223-236.	5.4	9

Allen M Shapiro

#	Article	IF	CITATIONS
37	Mantle helium in ground waters of eastern North America: Time and space constraints on sources. Geology, 1995, 23, 675.	4.4	31
38	Interpretation of Prematurely Terminated Air-Pressurized Slug Tests. Ground Water, 1995, 33, 539-546.	1.3	4
39	A solute flux approach to transport in heterogeneous formations: 2. Uncertainty analysis. Water Resources Research, 1992, 28, 1377-1388.	4.2	136
40	A solute flux approach to transport in heterogeneous formations: 1. The general framework. Water Resources Research, 1992, 28, 1369-1376.	4.2	198
41	Comment on "Macrodispersion in sand-shale sequences―by A. J. Desbarats. Water Resources Research, 1991, 27, 135-139.	4.2	6
42	Comment on "Flow and tracer transport in a single fracture: A stochastic model and its relation to some field observations―by L. Moreno et al Water Resources Research, 1991, 27, 129-131.	4.2	5
43	An exact solution of solute transport by one-dimensional random velocity fields. Stochastic Hydrology & Hydraulics, 1991, 5, 45-54.	0.5	17
44	A comparison of two- and three-dimensional stochastic models of regional solute movement. Transport in Porous Media, 1990, 5, 1-25.	2.6	13
45	Mass arrival of sorptive solute in heterogeneous porous media. Water Resources Research, 1990, 26, 2057-2067.	4.2	134
46	Interpretation of oscillatory water levels in observation wells during aquifer tests in fractured rock. Water Resources Research, 1989, 25, 2129-2137.	4.2	17
47	Assessing the validity of the channel model of fracture aperture under field conditions. Water Resources Research, 1989, 25, 817-828.	4.2	46
48	Solute advection in stratified formations. Water Resources Research, 1989, 25, 1283-1289.	4.2	31
49	Stochastic analysis of solute arrival time in heterogeneous porous media. Water Resources Research, 1988, 24, 1711-1718.	4.2	160
50	Simulation of steady-state flow in three-dimensional fracture networks using the boundary-element method. Advances in Water Resources, 1985, 8, 106-110.	3.8	34
51	Motion of the seawater interface in a coastal aquifer by the method of successive steady states. Journal of Hydrology, 1985, 76, 119-132.	5.4	10
52	On the shape of the non-steady interface intersecting discontinuities in permeability. Advances in Water Resources, 1984, 7, 106-112.	3.8	0
53	Stochastic analysis of oneâ€dimensional steady state unsaturated flow: A Comparison of Monte Carlo and Perturbation Methods. Water Resources Research, 1983, 19, 121-133.	4.2	70
54	Steady state fluid response in fractured rock: A boundary element solution for a coupled, discrete fracture continuum model. Water Resources Research, 1983, 19, 959-969.	4.2	39

Allen M Shapiro

#	ARTICLE	IF	CITATIONS
55	Physics of Flow in Geothermal Systems. Special Paper of the Geological Society of America, 1982, , 25-30.	0.5	1
56	Solution of Immiscible Displacement in Porous Media Using the Collocation Finite Element Method. , 1982, , 593-602.		1
57	Analysis of an upstream weighted collocation approximation to the transport equation. Journal of Computational Physics, 1981, 39, 46-71.	3.8	24
58	Reply [to "Comment on â€~A new collocation method for the solution of the convectionâ€dominated transport equation' by George E. Pinder and Allen Shapiroâ€]. Water Resources Research, 1980, 16, 1137-1137.	4.2	0
59	A new collocation method for the solution of the convection-dominated transport equation. Water Resources Research, 1979, 15, 1177-1182.	4.2	35