
Junsheng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5470977/publications.pdf Version: 2024-02-01

LUNCHENC VANC

#	Article	IF	CITATIONS
1	A prion-like domain of TFEB mediates the co-aggregation of TFEB and mHTT. Autophagy, 2023, 19, 544-550.	9.1	8
2	SQSTM1/p62 droplet -mediated autophagosome formation:insights into Huntington disease. Autophagy, 2021, 17, 3256-3259.	9.1	3
3	Phase Transition of Huntingtin: Factors and Pathological Relevance. Frontiers in Genetics, 2020, 11, 754.	2.3	23
4	Physicochemical characterization of polysaccharide from the leaf of Dendrobium officinale and effect on LPS induced damage in GES-1 cell. International Journal of Biological Macromolecules, 2020, 149, 320-330.	7.5	45
5	Ion channels as potential redox sensors in lysosomes. Channels, 2019, 13, 477-482.	2.8	6
6	Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR. PLoS Biology, 2019, 17, e3000252.	5.6	70
7	Release and uptake mechanisms of vesicular Ca2+ stores. Protein and Cell, 2019, 10, 8-19.	11.0	76
8	Oxidation of Potassium Channels in Neurodegenerative Diseases: A Mini- Review. CNS and Neurological Disorders - Drug Targets, 2018, 17, 267-271.	1.4	3
9	Gastric Acid Secretion from Parietal Cells Is Mediated by a Ca2+ Efflux Channel in the Tubulovesicle. Developmental Cell, 2017, 41, 262-273.e6.	7.0	42
10	Role of the ribosomal quality control machinery in nucleocytoplasmic translocation of polyQ-expanded huntingtin exon-1. Biochemical and Biophysical Research Communications, 2017, 493, 708-717.	2.1	17
11	Lysosomal Calcium in Neurodegeneration. Messenger (Los Angeles, Calif: Print), 2016, 5, 56-66.	0.3	21
12	MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nature Communications, 2016, 7, 12109.	12.8	369
13	Lifespan Control by Redox-Dependent Recruitment of Chaperones to Misfolded Proteins. Cell, 2016, 166, 140-151.	28.9	120
14	A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nature Cell Biology, 2016, 18, 404-417.	10.3	302
15	Spatial sequestration and detoxification of Huntingtin by the ribosome quality control complex. ELife, 2016, 5, .	6.0	57
16	Mediator tail subunits can form amyloid-like aggregatesin vivoand affect stress response in yeast. Nucleic Acids Research, 2015, 43, 7306-7314.	14.5	23
17	Essential Genetic Interactors of SIR2 Required for Spatial Sequestration and Asymmetrical Inheritance of Protein Aggregates. PLoS Genetics, 2014, 10, e1004539.	3.5	73
18	Peroxiredoxins, gerontogenes linking aging to genome instability and cancer. Genes and Development, 2012, 26, 2001-2008.	5.9	84

JUNSHENG YANG

#	Article	IF	CITATIONS
19	Life Span Extension and H2O2 Resistance Elicited by Caloric Restriction Require the Peroxiredoxin Tsa1 in Saccharomyces cerevisiae. Molecular Cell, 2011, 43, 823-833.	9.7	93
20	Ubiquitin over-expression phenotypes and ubiquitin gene molecular misreading during aging in Drosophila melanogaster. Aging, 2011, 3, 237-261.	3.1	5
21	Conditional inactivation of MRG15 gene function limits survival during larval and adult stages of Drosophila melanogaster. Experimental Gerontology, 2010, 45, 825-833.	2.8	8
22	Expression of hsp22 and hsp70 Transgenes Is Partially Predictive of Drosophila Survival Under Normal and Stress Conditions. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 828-838.	3.6	65
23	Simultaneous tracking of movement and gene expression in multiple Drosophila melanogaster flies using GFP and DsRED fluorescent reporter transgenes. BMC Research Notes, 2009, 2, 58.	1.4	24
24	Simultaneous tracking of fly movement and gene expression using GFP. BMC Biotechnology, 2008, 8, 93.	3.3	22
25	Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7663-7668.	7.1	353