
Daniel O Daley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5470798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibiotic-Efficient Genetic Cassette for the TEM-1 β-Lactamase That Improves Plasmid Performance. ACS Synthetic Biology, 2022, 11, 241-253.	3.8	4
2	A Lead-Based Fragment Library Screening of the Glycosyltransferase WaaG from Escherichia coli. Pharmaceuticals, 2022, 15, 209.	3.8	3
3	Assembly dynamics of FtsZ and DamX during infection-related filamentation and division in uropathogenic E. coli. Nature Communications, 2022, 13, .	12.8	16
4	Signal amplification of <i>araC pBAD</i> using a standardized translation initiation region. Synthetic Biology, 2022, 7, .	2.2	5
5	Implementing Novel Designs in pET Expression Plasmids that Increase Protein Production. Bio-protocol, 2021, 11, e4133.	0.4	2
6	LyGo: A Platform for Rapid Screening of Lytic Polysaccharide Monooxygenase Production. ACS Synthetic Biology, 2021, 10, 897-906.	3.8	12
7	Improved designs for pET expression plasmids increase protein production yield in Escherichia coli. Communications Biology, 2020, 3, 214.	4.4	80
8	Structural analysis of the O-antigen polysaccharide from Escherichia coli O188. Carbohydrate Research, 2020, 498, 108051.	2.3	10
9	Increased production of periplasmic proteins in Escherichia coli by directed evolution of the translation initiation region. Microbial Cell Factories, 2020, 19, 85.	4.0	25
10	An OregonGreen488-labelled d-amino acid for visualizing peptidoglycan by super-resolution STED nanoscopy. Microbiology (United Kingdom), 2020, 166, 1129-1135.	1.8	7
11	Super-resolution images of peptidoglycan remodelling enzymes at the division site of Escherichia coli. Current Genetics, 2019, 65, 99-101.	1.7	12
12	TARSyn: Tunable Antibiotic Resistance Devices Enabling Bacterial Synthetic Evolution and Protein Production. ACS Synthetic Biology, 2018, 7, 432-442.	3.8	26
13	A synbio approach for selection of highly expressed gene variants in Gram-positive bacteria. Microbial Cell Factories, 2018, 17, 37.	4.0	5
14	Selection of Highly Expressed Gene Variants in Escherichia coli Using Translationally Coupled Antibiotic Selection Markers. Methods in Molecular Biology, 2018, 1671, 259-268.	0.9	2
15	Spatial separation of FtsZ and FtsN during cell division. Molecular Microbiology, 2018, 107, 387-401.	2.5	41
16	The bacterial divisome: more than a ring?. Current Genetics, 2017, 63, 161-164.	1.7	26
17	Increasing the permeability of Escherichia coli using MAC13243. Scientific Reports, 2017, 7, 17629.	3.3	85
18	Identification of a Fragment-Based Scaffold that Inhibits the Glycosyltransferase WaaG from Escherichia coli. Antibiotics, 2016, 5, 10.	3.7	4

#	Article	IF	CITATIONS
19	Codon Optimizing for Increased Membrane Protein Production: A Minimalist Approach. Methods in Molecular Biology, 2016, 1432, 53-61.	0.9	5
20	FtsZ does not initiate membrane constriction at the onset of division. Scientific Reports, 2016, 6, 33138.	3.3	32
21	Coordinated disassembly of the divisome complex in <i>Escherichia coli</i> . Molecular Microbiology, 2016, 101, 425-438.	2.5	42
22	Identification of Putative Substrates for the Periplasmic Chaperone YfgM in Escherichia coli Using Quantitative Proteomics. Molecular and Cellular Proteomics, 2015, 14, 216-226.	3.8	14
23	The <i>Escherichia coli</i> Envelope Stress Sensor CpxA Responds to Changes in Lipid Bilayer Properties. Biochemistry, 2015, 54, 3670-3676.	2.5	23
24	Trimeric microsomal glutathione transferase 2 displays one third of the sites reactivity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1365-1371.	2.3	19
25	Enhanced Protein Production in <i>Escherichia coli</i> by Optimization of Cloning Scars at the Vector–Coding Sequence Junction. ACS Synthetic Biology, 2015, 4, 959-965.	3.8	46
26	Heterologous overexpression of a monotopic glucosyltransferase (MGS) induces fatty acid remodeling in Escherichia coli membranes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1862-1870.	2.6	10
27	Versatile in vitro system to study translocation and functional integration of bacterial outer membrane proteins. Nature Communications, 2014, 5, 5396.	12.8	24
28	YfgM Is an Ancillary Subunit of the SecYEG Translocon in Escherichia coli. Journal of Biological Chemistry, 2014, 289, 19089-19097.	3.4	47
29	Disassembly of the divisome in <scp><i>E</i></scp> <i>scherichia coli</i> : evidence that <scp>FtsZ</scp> dissociates before compartmentalization. Molecular Microbiology, 2014, 92, 1-9.	2.5	70
30	Why Is the GMN Motif Conserved in the CorA/Mrs2/Alr1 Superfamily of Magnesium Transport Proteins?. Biochemistry, 2013, 52, 4842-4847.	2.5	20
31	The outer mitochondrial membrane in higher plants. Trends in Plant Science, 2013, 18, 207-217.	8.8	31
32	Improved production of membrane proteins in <i>Escherichia coli</i> by selective codon substitutions. FEBS Letters, 2013, 587, 2352-2358.	2.8	34
33	Sequential Closure of the Cytoplasm and Then the Periplasm during Cell Division in Escherichia coli. Journal of Bacteriology, 2012, 194, 584-586.	2.2	10
34	Antiparallel Dimers of the Small Multidrug Resistance Protein EmrE Are More Stable Than Parallel Dimers. Journal of Biological Chemistry, 2012, 287, 26052-26059.	3.4	39
35	The Periplasmic Loop Provides Stability to the Open State of the CorA Magnesium Channel. Journal of Biological Chemistry, 2012, 287, 27547-27555.	3.4	14
36	Heme incorporation into the cytochrome <i>bo</i> ₃ occurs at a late stage of assembly. FEBS Letters, 2012, 586, 4197-4202.	2.8	5

#	Article	IF	CITATIONS
37	Manipulating the genetic code for membrane protein production: What have we learnt so far?. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1091-1096.	2.6	24
38	Application of splitâ€green fluorescent protein for topology mapping membrane proteins in <i>Escherichia coli</i> . Protein Science, 2012, 21, 1571-1576.	7.6	9
39	TheEscherichia coliCell Division Protein ZipA Forms Homodimers Prior to Association with FtsZ. Biochemistry, 2012, 51, 1407-1415.	2.5	19
40	Systematic Analysis of Native Membrane Protein Complexes in <i>Escherichia coli</i> . Journal of Proteome Research, 2011, 10, 1848-1859.	3.7	67
41	Penicillinâ€binding protein 5 can form a homoâ€oligomeric complex in the inner membrane of <i>Escherichia coli</i> . Protein Science, 2011, 20, 1520-1529.	7.6	5
42	A reference map of the membrane proteome of <i>Enterococcus faecalis</i> . Proteomics, 2011, 11, 3935-3941.	2.2	17
43	Cellâ€free expression profiling of <i>E. coli</i> inner membrane proteins. Proteomics, 2010, 10, 1762-1779.	2.2	32
44	Estimating Zâ€ring radius and contraction in dividing <i>Escherichia coli</i> . Molecular Microbiology, 2010, 76, 151-158.	2.5	6
45	Exploring the inner membrane proteome of Escherichia coli: which proteins are eluding detection and why?. Trends in Microbiology, 2009, 17, 444-449.	7.7	30
46	The assembly of membrane proteins into complexes. Current Opinion in Structural Biology, 2008, 18, 420-424.	5.7	46
47	Membrane protein structural biology – How far can the bugs take us? (Review). Molecular Membrane Biology, 2007, 24, 329-332.	2.0	37
48	Assembly of the Cytochrome bo3 Complex. Journal of Molecular Biology, 2007, 371, 765-773.	4.2	47
49	A scalable, GFP-based pipeline for membrane protein overexpression screening and purification. Protein Science, 2005, 14, 2011-2017.	7.6	121
50	Global Topology Analysis of the <i>Escherichia coli</i> Inner Membrane Proteome. Science, 2005, 308, 1321-1323.	12.6	455
51	Adaptations Required for Mitochondrial Import following Mitochondrial to Nucleus Gene Transfer of Ribosomal Protein S10. Plant Physiology, 2005, 138, 2134-2144.	4.8	16
52	Protein Complexes of the Escherichia coli Cell Envelope*. Journal of Biological Chemistry, 2005, 280, 34409-34419.	3.4	183
53	Experimentally Constrained Topology Models for 51,208 Bacterial Inner Membrane Proteins. Journal of Molecular Biology, 2005, 352, 489-494.	4.2	51
54	Why genes persist in organelle genomes. Genome Biology, 2005, 6, 110.	9.6	57

#	Article	IF	CITATIONS
55	Experimentally based topology models for <i>E. coli</i> inner membrane proteins. Protein Science, 2004, 13, 937-945.	7.6	90
56	Plant Mitochondrial Genome Evolution and Gene Transfer to the Nucleus. Advances in Photosynthesis and Respiration, 2004, , 107-120.	1.0	1
57	Respiratory gene expression in soybean cotyledons during post-germinative development. Plant Molecular Biology, 2003, 51, 745-755.	3.9	14
58	Intracellular gene transfer: Reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10510-10515.	7.1	63
59	Genes for Two Mitochondrial Ribosomal Proteins in Flowering Plants Are Derived from Their Chloroplast or Cytosolic Counterparts. Plant Cell, 2002, 14, 931-943.	6.6	108
60	Gene transfer from mitochondrion to nucleus: novel mechanisms for gene activation from Cox2. Plant Journal, 2002, 30, 11-21.	5.7	51
61	Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature, 2000, 408, 354-357.	27.8	210

62 Interaction Analysis. , 0, , 295-315.

0