Ajay B Chitnis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5469897/publications.pdf Version: 2024-02-01

ALAV R CHITNIS

#	Article	lF	CITATIONS
1	Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development (Cambridge), 2001, 128, 3675-3683.	2.5	768
2	Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nature Methods, 2012, 9, 749-754.	19.0	397
3	Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature, 2000, 407, 913-916.	27.8	364
4	Instant super-resolution imaging in live cells and embryos via analog image processing. Nature Methods, 2013, 10, 1122-1126.	19.0	355
5	Expression of proneural and neurogenic genes in the zebrafish lateral line primordium correlates with selection of hair cell fate in neuromasts. Mechanisms of Development, 2001, 102, 263-266.	1.7	142
6	Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples. Optica, 2014, 1, 181.	9.3	107
7	Rapid image deconvolution and multiview fusion for optical microscopy. Nature Biotechnology, 2020, 38, 1337-1346.	17.5	105
8	Building the posterior lateral line system in zebrafish. Developmental Neurobiology, 2012, 72, 234-255.	3.0	98
9	Why is delta endocytosis required for effective activation of notch?. Developmental Dynamics, 2006, 235, 886-894.	1.8	83
10	Specification of an anterior neuroectoderm patterning by Frizzled8a-mediated Wnt8b signalling during late gastrulation in zebrafish. Development (Cambridge), 2002, 129, 4443-4455.	2.5	81
11	A role for <i>iro1</i> and <i>iro7</i> in the establishment of an anteroposterior compartment of the ectoderm adjacent to the midbrain-hindbrain boundary. Development (Cambridge), 2002, 129, 2317-2327.	2.5	73
12	Atoh1a expression must be restricted by Notch signaling for effective morphogenesis of the posterior lateral line primordium in zebrafish. Development (Cambridge), 2010, 137, 3477-3487.	2.5	65
13	Leading and trailing cells cooperate in collective migration of the zebrafish posterior lateral line primordium. Development (Cambridge), 2014, 141, 3188-3196.	2.5	57
14	A framework for understanding morphogenesis and migration of the zebrafish posterior Lateral Line primordium. Mechanisms of Development, 2017, 148, 69-78.	1.7	53
15	Lef1 regulates Dusp6 to influence neuromast formation and spacing in the zebrafish posterior lateral line primordium. Development (Cambridge), 2013, 140, 2387-2397.	2.5	34
16	Epb41l5 competes with Delta as a substrate for Mib1 to coordinate specification and differentiation of neurons. Development (Cambridge), 2016, 143, 3085-96.	2.5	24
17	In toto imaging of the migrating Zebrafish lateral line primordium at single cell resolution. Developmental Biology, 2017, 422, 14-23.	2.0	21
18	Zebrafish Posterior Lateral Line primordium migration requires interactions between a superficial sheath of motile cells and the skin. ELife, 2020, 9, .	6.0	17

AJAY B CHITNIS

#	Article	IF	CITATIONS
19	Polarization and migration in the zebrafish posterior lateral line system. PLoS Computational Biology, 2017, 13, e1005451.	3.2	14
20	Self-organizing spots get under your skin. PLoS Biology, 2017, 15, e2004412.	5.6	13
21	Cxcl12a induces <i>snail1b</i> expression to initiate collective migration and sequential Fgf-dependent neuromast formation in the zebrafish posterior Lateral Line primordium. Development (Cambridge), 2018, 145, .	2.5	9
22	Time-lapse imaging beyond the diffraction limit. Methods, 2018, 150, 32-41.	3.8	9
23	NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium. Seminars in Cell and Developmental Biology, 2020, 100, 186-198.	5.0	8
24	Exploring alternative models of rostral–caudal patterning in the zebrafish neurectoderm with computer simulations. Current Opinion in Genetics and Development, 2004, 14, 415-421.	3.3	4
25	Keeping single minded Expression on the Straight and Narrow. Molecular Cell, 2006, 21, 450-452.	9.7	4
26	Connecting physical cues and tissue patterning. ELife, 2015, 4, e11375.	6.0	1
27	Development of the Zebrafish Posterior Lateral Line System. , 2020, , 66-84.		1