Dong Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/546813/publications.pdf

Version: 2024-02-01

53 papers	1,804 citations	23 h-index	276875 41 g-index
54	54	54	2132
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Long Residence Time at the Vasopressin V ₂ Receptor Translates into Superior Inhibitory Effects in <i>Ex Vivo</i> and <i>In Vivo</i> Models of Autosomal Dominant Polycystic Kidney Disease. Journal of Medicinal Chemistry, 2022, 65, 7717-7728.	6.4	11
2	mPGES-2 blockade antagonizes \hat{l}^2 -cell senescence to ameliorate diabetes by acting on NR4A1. Nature Metabolism, 2022, 4, 269-283.	11.9	16
3	Benzodiazepine Derivatives as Potent Vasopressin V ₂ Receptor Antagonists for the Treatment of Autosomal Dominant Kidney Disease. Journal of Medicinal Chemistry, 2022, 65, 9295-9311.	6.4	12
4	Defluorinative Alkylation of Trifluoromethylbenzimidazoles Enabled by Spin-Center Shift: A Synergistic Photocatalysis/Thiol Catalysis Process with CO⟨sub⟩2⟨/sub⟩⟨sup⟩•–⟨/sup⟩. Organic Letters, 2022, 24, 4075-4080.	4.6	43
5	Optimal use of intravenous tranexamic acid for hemorrhage prevention in pregnant women. American Journal of Obstetrics and Gynecology, 2021, 225, 85.e1-85.e11.	1.3	24
6	Application of a plasmin generation assay to define pharmacodynamic effects of tranexamic acid in women undergoing cesarean delivery. Journal of Thrombosis and Haemostasis, 2021, 19, 221-232.	3.8	23
7	Optimizing ceftaroline dosing in critically ill patients undergoing continuous renal replacement therapy. Pharmacotherapy, 2021, 41, 205-211.	2.6	8
8	Pyrvinium Treatment Confers Hepatic Metabolic Benefits via \hat{I}^2 -Catenin Downregulation and AMPK Activation. Pharmaceutics, 2021, 13, 330.	4.5	5
9	Population pharmacokinetics and pharmacodynamics of Tranexamic acid in women undergoing caesarean delivery. British Journal of Clinical Pharmacology, 2021, 87, 3531-3541.	2.4	15
10	Divergent Regulation of OCT and MATE Drug Transporters by Cadmium Exposure. Pharmaceutics, 2021, 13, 537.	4.5	4
11	Lrp6 Genotype affects Individual Susceptibility to Nonalcoholic Fatty Liver Disease and Silibinin Therapeutic Response via Wnt/ $\hat{\Gamma}^2$ -catenin-Cyp2e1 Signaling. International Journal of Biological Sciences, 2021, 17, 3936-3953.	6.4	2
12	Moxifloxacin derivatives with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Current Topics in Medicinal Chemistry, 2021, 21, .	2.1	1
13	Cadmium exposure enhances organic cation transporter 2 trafficking to the kidney membrane and exacerbates cisplatin nephrotoxicity. Kidney International, 2020, 97, 765-777.	5.2	13
14	Revisit ligand-receptor interaction at the human vasopressin V2 receptor: A kinetic perspective. European Journal of Pharmacology, 2020, 880, 173157.	3.5	8
15	Drug–Target Association Kinetics in Drug Discovery. Trends in Biochemical Sciences, 2019, 44, 861-871.	7.5	42
16	Long residence time adenosine A1 receptor agonists produce sustained wash-resistant antilipolytic effect in rat adipocytes. Biochemical Pharmacology, 2019, 164, 45-52.	4.4	17
17	The LRP6 functional mutation rs2302685 contributes to individual susceptibility to alcoholic liver injury related to the Wnt/ \hat{l}^2 -catenin-TCF1-CYP2E1 signaling pathway. Archives of Toxicology, 2019, 93, 1679-1695.	4.2	13
18	A twoâ€state model for the kinetics of competitive radioligand binding. British Journal of Pharmacology, 2018, 175, 1719-1730.	5.4	14

#	Article	IF	CITATIONS
19	Indinavir Alters the Pharmacokinetics of Lamivudine Partially via Inhibition of Multidrug and Toxin Extrusion Protein 1 (MATE1). Pharmaceutical Research, 2018, 35, 14.	3.5	5
20	Functional organic cation transporters mediate osteogenic response to metformin in human umbilical cord mesenchymal stromal cells. Cytotherapy, 2018, 20, 650-659.	0.7	19
21	Metformin induces osteoblastic differentiation of human induced pluripotent stem cellâ€derived mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 437-446.	2.7	84
22	Ketamine induces hippocampal apoptosis through a mechanism associated with the caspase-1 dependent pyroptosis. Neuropharmacology, 2018, 128, 63-75.	4.1	40
23	Molecular Basis of Ligand Dissociation from G Protein-Coupled Receptors and Predicting Residence Time. Methods in Molecular Biology, 2018, 1705, 197-206.	0.9	3
24	Novel Calcium Phosphate Cement with Metformin-Loaded Chitosan for Odontogenic Differentiation of Human Dental Pulp Cells. Stem Cells International, 2018, 2018, 1-10.	2.5	29
25	Irinotecan Alters the Disposition of Morphine Via Inhibition of Organic Cation Transporter 1 (OCT1) and 2 (OCT2). Pharmaceutical Research, 2018, 35, 243.	3.5	24
26	Selective Inhibition on Organic Cation Transporters by Carvedilol Protects Mice from Cisplatin-Induced Nephrotoxicity. Pharmaceutical Research, 2018, 35, 204.	3.5	22
27	Kinetic Aspects of the Interaction between Ligand and G Protein-Coupled Receptor: The Case of the Adenosine Receptors. Chemical Reviews, 2017, 117, 38-66.	47.7	51
28	Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug Discovery Today, 2017, 22, 896-911.	6.4	165
29	Disturbance of Mammary UDP-Glucuronosyltransferase Represses Estrogen Metabolism and Exacerbates Experimental Breast Cancer. Journal of Pharmaceutical Sciences, 2017, 106, 2152-2162.	3.3	11
30	Metabolic Response to Olanzapine in Healthy Chinese Subjects with rs7093146 Polymorphism in Transcription Factor 7â€ike 2 Gene (<i><<cp>TCF7L2</cp></i>): A Prospective Study. Basic and Clinical Pharmacology and Toxicology, 2017, 120, 601-609.	2.5	2
31	Structure-Activity Relationships of the Sustained Effects of Adenosine A2A Receptor Agonists Driven by Slow Dissociation Kinetics. Molecular Pharmacology, 2017, 91, 25-38.	2.3	18
32	Multidrug and toxin extrusion proteins mediate cellular transport of cadmium. Toxicology and Applied Pharmacology, 2017, 314, 55-62.	2.8	19
33	Equilibrium and kinetic selectivity profiling on the human adenosine receptors. Biochemical Pharmacology, 2016, 105, 34-41.	4.4	18
34	5′-Substituted Amiloride Derivatives as Allosteric Modulators Binding in the Sodium Ion Pocket of the Adenosine A _{2A} Receptor. Journal of Medicinal Chemistry, 2016, 59, 4769-4777.	6.4	30
35	The Added Value of Assessing Ligand–Receptor Binding Kinetics in Drug Discovery. ACS Medicinal Chemistry Letters, 2016, 7, 819-821.	2.8	27
36	Controlling the Dissociation of Ligands from the Adenosine A _{2A} Receptor through Modulation of Salt Bridge Strength. Journal of Medicinal Chemistry, 2016, 59, 6470-6479.	6.4	151

#	Article	IF	CITATIONS
37	Effect of Ondansetron on Metformin Pharmacokinetics and Response in Healthy Subjects. Drug Metabolism and Disposition, 2016, 44, 489-494.	3.3	18
38	Molecular Basis of Ligand Dissociation from the Adenosine A _{2A} Receptor. Molecular Pharmacology, 2016, 89, 485-491.	2.3	72
39	Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors. Purinergic Signalling, 2015, 11, 581-594.	2.2	20
40	The Role of Target Binding Kinetics in Drug Discovery. ChemMedChem, 2015, 10, 1793-1796.	3.2	37
41	Synthesis and Evaluation of Bile Acid–Ribavirin Conjugates as Prodrugs to Target the Liver. Journal of Pharmaceutical Sciences, 2015, 104, 2864-2876.	3.3	19
42	Structure-kinetics relationships of Capadenoson derivatives as adenosine A 1 receptor agonists. European Journal of Medicinal Chemistry, 2015, $101,681-691$.	5.5	28
43	Gating function of isoleucineâ€116 in <scp>TM</scp> â€3 (position <scp>III</scp> :16/3.40) for the activity state of the <scp>CC</scp> â€chemokine receptor 5 (<scp>CCR</scp> 5). British Journal of Pharmacology, 2014, 171, 1566-1579.	5.4	10
44	Molecular mechanism of allosteric modulation at $scp>GPCRs$: insight from a binding kinetics study at the human $scp>A1$ adenosine receptor. British Journal of Pharmacology, 2014, 171, 5295-5312.	5.4	20
45	Drugâ€Target Residence Timeâ€"A Case for G Proteinâ€Coupled Receptors. Medicinal Research Reviews, 2014, 34, 856-892.	10.5	145
46	Binding Kinetics of ZM241385 Derivatives at the Human Adenosine A _{2A} Receptor. ChemMedChem, 2014, 9, 752-761.	3.2	45
47	Agonists for the Adenosine A ₁ Receptor with Tunable Residence Time. A Case for Nonribose 4-Amino-6-aryl-5-cyano-2-thiopyrimidines. Journal of Medicinal Chemistry, 2014, 57, 3213-3222.	6.4	47
48	Dual-Point Competition Association Assay: A Fast and High-Throughput Kinetic Screening Method for Assessing Ligand-Receptor Binding Kinetics. Journal of Biomolecular Screening, 2013, 18, 309-320.	2.6	65
49	Biased and Constitutive Signaling in the CC-chemokine Receptor CCR5 by Manipulating the Interface between Transmembrane Helices 6 and 7. Journal of Biological Chemistry, 2013, 288, 12511-12521.	3.4	59
50	Functional efficacy of adenosine A _{2A} receptor agonists is positively correlated to their receptor residence time. British Journal of Pharmacology, 2012, 166, 1846-1859.	5.4	153
51	GPCR structure and activation: an essential role for the first extracellular loop in activating the adenosine A _{2B} receptor. FASEB Journal, 2011, 25, 632-643.	0.5	44
52	Exploring Chemical Substructures Essential for hERG K ⁺ Channel Blockade by Synthesis and Biological Evaluation of Dofetilide Analogues. ChemMedChem, 2009, 4, 1722-1732.	3.2	27
53	<scp>PF</scp> â€06409577 inhibits renal cyst progression by concurrently inhibiting the <scp>mTOR</scp> pathway and <scp>CFTR</scp> channel activity. FEBS Open Bio, 0, , .	2.3	3