
Dipak P Ramji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5467950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anti-inflammatory and immunoregulatory effects of pinolenic acid in rheumatoid arthritis. Rheumatology, 2022, 61, 992-1004.	1.9	5
2	Survey of Approaches for Investigation of Atherosclerosis In Vivo. Methods in Molecular Biology, 2022, 2419, 57-72.	0.9	2
3	Atherosclerosis: Pathogenesis and Key Cellular Processes, Current and Emerging Therapies, Key Challenges, and Future Research Directions. Methods in Molecular Biology, 2022, 2419, 3-19.	0.9	9
4	Monitoring Modified and Associated with Macrophage Foam Formation. Methods in Molecular Biology, 2022, 2419, 247-255.	0.9	1
5	Survey of In Vitro Model Systems for Investigation of Key Cellular Processes Associated with Atherosclerosis. Methods in Molecular Biology, 2022, 2419, 39-56.	0.9	3
6	Evaluation of Plaque Burden and Lipid Content in Atherosclerotic Plaques. Methods in Molecular Biology, 2022, 2419, 481-496.	0.9	1
7	Monitoring Cellularity and Expression of Key Markers in Atherosclerotic Plaques. Methods in Molecular Biology, 2022, 2419, 497-506.	0.9	1
8	Key Roles of Inflammation in Atherosclerosis: Mediators Involved in Orchestrating the Inflammatory Response and Its Resolution in the Disease Along with Therapeutic Avenues Targeting Inflammation. Methods in Molecular Biology, 2022, 2419, 21-37.	0.9	6
9	The Lab4P Consortium of Probiotics Attenuates Atherosclerosis in LDL Receptor Deficient Mice Fed a High Fat Diet and Causes Plaque Stabilization by Inhibiting Inflammation and Several Proâ€Atherogenic Processes. Molecular Nutrition and Food Research, 2021, 65, e2100214.	3.3	14
10	Proâ€atherogenic actions of signal transducer and activator of transcription 1 serine 727 phosphorylation in LDL receptor deficient mice via modulation of plaque inflammation. FASEB Journal, 2021, 35, e21892.	0.5	6
11	Protective effects of a unique combination of nutritionally active ingredients on risk factors and gene expression associated with atherosclerosis in C57BL/6J mice fed a high fat diet. Food and Function, 2021, 12, 3657-3671.	4.6	12
12	The Potential of Probiotics in the Prevention and Treatment of Atherosclerosis. Molecular Nutrition and Food Research, 2020, 64, e1900797.	3.3	39
13	A perspective on targeting inflammation and cytokine actions in atherosclerosis. Future Medicinal Chemistry, 2020, 12, 613-626.	2.3	15
14	The interleukin-33-mediated inhibition of expression of two key genes implicated in atherosclerosis in human macrophages requires MAP kinase, phosphoinositide 3-kinase and nuclear factor-κB signaling pathways. Scientific Reports, 2019, 9, 11317.	3.3	24
15	Dihomo-γ-linolenic acid inhibits several key cellular processes associated with atherosclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2538-2550.	3.8	41
16	Polyunsaturated Fatty Acids and Atherosclerosis: Insights from Pre linical Studies. European Journal of Lipid Science and Technology, 2019, 121, 1800029.	1.5	15
17	Nutraceuticals as therapeutic agents for atherosclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1562-1572.	3.8	62
18	Cytokines in Atherosclerosis. , 2017, , 109-118.		2

#	Article	IF	CITATIONS
19	Nutraceutical therapies for atherosclerosis. Nature Reviews Cardiology, 2016, 13, 513-532.	13.7	136
20	Cytokines: roles in atherosclerosis disease progression and potential therapeutic targets. Future Medicinal Chemistry, 2016, 8, 1317-1330.	2.3	99
21	The role of mitogen-activated protein kinases and sterol receptor coactivator-1 in TGF-β-regulated expression of genes implicated in macrophage cholesterol uptake. Scientific Reports, 2016, 6, 34368.	3.3	11
22	A Unique Combination of Nutritionally Active Ingredients Can Prevent Several Key Processes Associated with Atherosclerosis In Vitro. PLoS ONE, 2016, 11, e0151057.	2.5	24
23	Protein Kinase C Is Involved in the Induction of ATPâ€Binding Cassette Transporter A1 Expression by Liver X Receptor/Retinoid X Receptor Agonist in Human Macrophages. Journal of Cellular Biochemistry, 2015, 116, 2032-2038.	2.6	9
24	Protein Kinase C Is Involved in the Induction of ATP-Binding Cassette Transporter A1 Expression by Liver X Receptor/Retinoid X Receptor Agonist in Human Macrophages. Journal of Cellular Physiology, 2015, , n/a-n/a.	4.1	2
25	The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1498-1510.	3.8	72
26	The Phosphoinositide 3â€Kinase Signaling Pathway is Involved in the Control of Modified Lowâ€Đensity Lipoprotein Uptake by Human Macrophages. Lipids, 2015, 50, 253-260.	1.7	13
27	Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine and Growth Factor Reviews, 2015, 26, 673-685.	7.2	370
28	Interferon-γ: Promising therapeutic target in atherosclerosis. World Journal of Experimental Medicine, 2015, 5, 154.	1.7	27
29	The anti-atherogenic cytokine interleukin-33 inhibits the expression of a disintegrin and metalloproteinase with thrombospondin motifs-1, -4 and -5 in human macrophages: Requirement of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphoinositide 3-kinase signaling pathways. International Journal of Biochemistry and Cell Biology, 2014, 46, 113-123.	2.8	20
30	Regulation of ADAMTS-1, -4 and -5 expression in human macrophages: Differential regulation by key cytokines implicated in atherosclerosis and novel synergism between TL1A and IL-17. Cytokine, 2013, 64, 234-242.	3.2	44
31	Differential regulation of macropinocytosis in macrophages by cytokines: Implications for foam cell formation and atherosclerosis. Cytokine, 2013, 64, 357-361.	3.2	35
32	Macrophages, lipid metabolism and gene expression in atherogenesis: a therapeutic target of the future?. Clinical Lipidology, 2012, 7, 37-48.	0.4	12
33	TGF-β inhibits the uptake of modified low density lipoprotein by human macrophages through a Smad-dependent pathway: A dominant role for Smad-2. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1608-1616.	3.8	34
34	Liver X Receptors, Atherosclerosis and Inflammation. Current Atherosclerosis Reports, 2012, 14, 284-293.	4.8	32
35	The expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 in human macrophages is inhibited by the anti-atherogenic cytokine transforming growth factor-Î ² and requires Smads, p38 mitogen-activated protein kinase and c-Jun. International Journal of Biochemistry and Cell Biology, 2011, 43, 805-811.	2.8	18
36	Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Progress in Lipid Research, 2011, 50, 331-347.	11.6	298

#	Article	IF	CITATIONS
37	A novel role for c-Jun N-terminal kinase and phosphoinositide 3-kinase in the liver X receptor-mediated induction of macrophage gene expression. Cellular Signalling, 2011, 23, 542-549.	3.6	24
38	Eicosapentaenoic Acid and Docosahexaenoic Acid Regulate Modified LDL Uptake and Macropinocytosis in Human Macrophages. Lipids, 2011, 46, 1053-1061.	1.7	30
39	Molecular mechanisms underlying the inhibition of IFNâ€Î³â€induced, STAT1â€mediated gene transcription in human macrophages by simvastatin and agonists of PPARs and LXRs. Journal of Cellular Biochemistry, 2011, 112, 675-683.	2.6	22
40	ADAMTS proteases: key roles in atherosclerosis?. Journal of Molecular Medicine, 2010, 88, 1203-1211.	3.9	69
41	ERK Is Integral to the IFN-γ–Mediated Activation of STAT1, the Expression of Key Genes Implicated in Atherosclerosis, and the Uptake of Modified Lipoproteins by Human Macrophages. Journal of Immunology, 2010, 185, 3041-3048.	0.8	89
42	The TNF-Like Protein 1A–Death Receptor 3 Pathway Promotes Macrophage Foam Cell Formation In Vitro. Journal of Immunology, 2010, 184, 5827-5834.	0.8	69
43	IL-33 Reduces Macrophage Foam Cell Formation. Journal of Immunology, 2010, 185, 1222-1229.	0.8	165
44	Requirement for nuclear factor kappa B signalling in the interleukin-1-induced expression of the CCAAT/enhancer binding protein-δgene in hepatocytes. International Journal of Biochemistry and Cell Biology, 2010, 42, 113-119.	2.8	17
45	Interferon gamma: A master regulator of atherosclerosis. Cytokine and Growth Factor Reviews, 2009, 20, 125-135.	7.2	200
46	The tumour necrosis factor-α-mediated suppression of the CCAAT/enhancer binding protein-α gene transcription in hepatocytes involves inhibition of autoregulation. International Journal of Biochemistry and Cell Biology, 2009, 41, 1189-1197.	2.8	13
47	Growth hormone-releasing peptides, CD36, and stimulation of cholesterol efflux: cyclooxygenase-2 is the link. Cardiovascular Research, 2009, 83, 419-420.	3.8	2
48	Protein kinase CK2, an important regulator of the inflammatory response?. Journal of Molecular Medicine, 2008, 86, 887-897.	3.9	90
49	The interferon-Î ³ -mediated inhibition of lipoprotein lipase gene transcription in macrophages involves casein kinase 2- and phosphoinositide-3-kinase-mediated regulation of transcription factors Sp1 and Sp3. Cellular Signalling, 2008, 20, 2296-2301.	3.6	33
50	Critical Role for Casein Kinase 2 and Phosphoinositide-3-Kinase in the Interferon-γ–Induced Expression of Monocyte Chemoattractant Protein-1 and Other Key Genes Implicated in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 806-812.	2.4	45
51	Lipoprotein lipase is expressed by glomerular mesangial cells. International Journal of Biochemistry and Cell Biology, 2006, 38, 12-16.	2.8	9
52	The role of transforming growth factor-Î ² in atherosclerosis. Cytokine and Growth Factor Reviews, 2006, 17, 487-499.	7.2	93
53	Transforming growth factor-β-regulated expression of genes in macrophages implicated in the control of cholesterol homoeostasis. Biochemical Society Transactions, 2006, 34, 1141-1144.	3.4	10
54	Transforming Growth Factor-β–Induced Expression of the Apolipoprotein E Gene Requires c-Jun N-Terminal Kinase, p38 Kinase, and Casein Kinase 2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1323-1329.	2.4	47

#	Article	IF	CITATIONS
55	Sp1 and Sp3 Mediate Constitutive Transcription of the Human Hyaluronan Synthase 2 Gene. Journal of Biological Chemistry, 2006, 281, 18043-18050.	3.4	42
56	The key role of apolipoprotein E in atherosclerosis. Journal of Molecular Medicine, 2005, 83, 329-342.	3.9	193
57	Interferon-Î ³ and atherosclerosis: Pro- or anti-atherogenic?. Cardiovascular Research, 2005, 67, 11-20.	3.8	107
58	A critical role for the Sp1-binding sites in the transforming growth factor-Â-mediated inhibition of lipoprotein lipase gene expression in macrophages. Nucleic Acids Research, 2005, 33, 1423-1434.	14.5	42
59	Interleukin-6 represses the transcription of the CCAAT/enhancer binding protein-Â gene in hepatoma cells by inhibiting its ability to autoactivate the proximal promoter region. Nucleic Acids Research, 2003, 31, 6722-6732.	14.5	19
60	Interferon-Î ³ Stimulates the Expression of the Inducible cAMP Early Repressor in Macrophages through the Activation of Casein Kinase 2. Journal of Biological Chemistry, 2003, 278, 17741-17751.	3.4	53
61	A Novel Role of Sp1 and Sp3 in the Interferon-Î ³ -mediated Suppression of Macrophage Lipoprotein Lipase Gene Transcription. Journal of Biological Chemistry, 2002, 277, 11097-11106.	3.4	46
62	The pivotal role of lipoprotein lipase in atherosclerosis. Cardiovascular Research, 2002, 55, 261-269.	3.8	87
63	CCAAT/enhancer-binding proteins: structure, function and regulation. Biochemical Journal, 2002, 365, 561-575.	3.7	1,211
64	Lipoprotein lipase: structure, function, regulation, and role in disease. Journal of Molecular Medicine, 2002, 80, 753-769.	3.9	697
65	Molecular Characterization of the Xenopus CCAAT-Enhancer Binding Protein \hat{I}^2 Gene Promoter. Biochemical and Biophysical Research Communications, 2001, 285, 430-436.	2.1	16
66	Gene, stimulus and cell-type specific regulation of activator protein-1 in mesangial cells by lipopolysaccharide and cytokines. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1492, 100-107.	2.4	10
67	The Ovine CCAAT-Enhancer Binding Protein \hat{I}' Gene: Cloning, Characterization, and Species-Specific Autoregulation. Biochemical and Biophysical Research Communications, 2000, 271, 346-352.	2.1	11
68	CYTOKINE-MEDIATED DIFFERENTIAL REGULATION OF MACROPHAGE ACTIVATOR PROTEIN-1 GENES. Cytokine, 2000, 12, 720-726.	3.2	18
69	DIFFERENTIAL REGULATION OF MACROPHAGE CCAAT-ENHANCER BINDING PROTEIN ISOFORMS BY LIPOPOLYSACCHARIDE AND CYTOKINES. Cytokine, 2000, 12, 1430-1436.	3.2	79
70	Stimulus- and cell-type-specific regulation of CCAAT-enhancer binding protein isoforms in glomerular mesangial cells by lipopolysaccharide and cytokines. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1501, 171-179.	3.8	22
71	Lipoprotein lipase, a key role in atherosclerosis?. FEBS Letters, 1999, 462, 1-6.	2.8	59
72	SYNERGISM BETWEEN LIPOPOLYSACCHARIDE AND INTERFERON Î ³ IN THE REGULATION OF LIPOPROTEIN LIPASE IN MACROPHAGES. Cytokine, 1999, 11, 408-415.	3.2	11

#	Article	IF	CITATIONS
73	INVOLVEMENT OF BOTH THE TYROSINE KINASE AND THE PHOSPHATIDYLINOSITOL-3′ KINASE SIGNAL TRANSDUCTION PATHWAYS IN THE REGULATION OF LIPOPROTEIN LIPASE EXPRESSION IN J774.2 MACROPHAGES BY CYTOKINES AND LIPOPOLYSACCHARIDE. Cytokine, 1999, 11, 463-468.	3.2	22
74	Characterisation and developmental regulation of the Xenopus laevis CCAAT-enhancer binding protein β gene. Mechanisms of Development, 1998, 77, 143-148.	1.7	18
75	SYNERGISM BETWEEN INTERFERON Î ³ AND TUMOUR NECROSIS FACTOR Î \pm IN THE REGULATION OF LIPOPROTEIN LIPASE IN THE MACROPHAGE J774.2 CELL LINE. Cytokine, 1998, 10, 38-48.	۱ 3.2	21
76	Expression of the genes encoding CCAAT-enhancer binding protein isoforms in the mouse mammary gland during lactation and involution. Biochemical Journal, 1998, 334, 205-210.	3.7	35
77	23 The suppression of lipoprotein lipase expression in J774.2 macrophages by EFN-γ and TNF-α is mediated at the transcriptional level. Biochemical Society Transactions, 1998, 26, S12-S12.	3.4	6
78	24 Regulation of macrophage lipoprotein lipase expression by lipopolysaccharide. Biochemical Society Transactions, 1998, 26, S13-S13.	3.4	1
79	Regulation of macrophage lipoprotein lipase by cytokines. Biochemical Society Transactions, 1998, 26, S253-S253.	3.4	2
80	117 Characterisation of a Xenopus 14-3-3 gene. Biochemical Society Transactions, 1997, 25, S649-S649.	3.4	0
81	118 Characterisation of the Xenopus CCAAT-enhancer binding protein (C/EBPα) gene. Biochemical Society Transactions, 1997, 25, S650-S650.	3.4	0
82	Sequence and expression analysis of a Xenopus laevis cDNA which encodes a homologue of mammalian 14-3-3 zeta protein. Gene, 1997, 190, 279-285.	2.2	13
83	DIFFERENTIAL REGULATION OF LIPOPROTEIN LIPASE IN THE MACROPHAGE J774.2 CELL LINE BY CYTOKINES. Cytokine, 1996, 8, 525-533.	3.2	41
84	Cloning of a new antenna gene cluster and expression analysis of the antenna gene family of Rhodopseudomonas palustris. FEBS Journal, 1993, 217, 867-875.	0.2	49
85	The two C/EBP isoforms, IL6DBP/NFIL6 and CEBP6Î′/NFIL63, are induced by IL6β to promote acute phase gene transcription via different mechanisms. Nucleic Acids Research, 1993, 21, 289-294.	14.5	171
86	Transcriptional Control of Gene Expression in Hepatic Cells. , 1993, , 162-242.		2
87	The transcription factor LF-A1 interacts with a bipartite recognition sequence in the promoter regions of several liver-specific genes. Nucleic Acids Research, 1991, 19, 1139-1146.	14.5	73