Wilhelm Schlag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5467256/publications.pdf Version: 2024-02-01

WILLEEM SCHLAC

#	Article	lF	CITATIONS
1	On Modified Scattering for 1D Quadratic Klein–Gordon Equations With Non-Generic Potentials. International Mathematics Research Notices, 2023, 2023, 5118-5208.	1.0	8
2	An introduction to multiscale techniques in the theory of Anderson localization, Part I. Nonlinear Analysis: Theory, Methods & Applications, 2022, 220, 112869.	1.1	5
3	On pointwise decay of waves. Journal of Mathematical Physics, 2021, 62, 061509.	1.1	6
4	Effective multi-scale approach to the Schrödinger cocycle over a skew-shift base. Ergodic Theory and Dynamical Systems, 2020, 40, 2788-2853.	0.6	7
5	Structure formulas for wave operators. American Journal of Mathematics, 2020, 142, 751-807.	1.1	10
6	On the spectrum of multi-frequency quasiperiodic SchrĶdinger operators with large coupling. Inventiones Mathematicae, 2019, 217, 603-701.	2.5	12
7	Structure formulas for wave operators under a small scaling invariant condition. Journal of Spectral Theory, 2019, 9, 967-990.	0.8	7
8	The Weber equation as a normal form with applications to top of the barrier scattering. Journal of Spectral Theory, 2018, 8, 347-412.	0.8	3
9	Profiles for the Radial Focusing 4d Energy-Critical Wave Equation. Communications in Mathematical Physics, 2018, 357, 943-1008.	2.2	17
10	Large global solutions for energy supercritical nonlinear wave equations on â"3+1. Journal D'Analyse Mathematique, 2017, 133, 91-131.	0.8	10
11	Linear Stability of the Skyrmion. International Mathematics Research Notices, 2016, , rnw114.	1.0	1
12	Center-stable manifold of the ground state in the energy space for the critical wave equation. Mathematische Annalen, 2015, 361, 1-50.	1.4	52
13	Threshold Phenomenon for the Quintic Wave Equation in Three Dimensions. Communications in Mathematical Physics, 2014, 327, 309-332.	2.2	19
14	Relaxation of Wave Maps Exterior to a Ball to Harmonic Maps for All Data. Geometric and Functional Analysis, 2014, 24, 610-647.	1.8	43
15	Energy partition for the linear radial wave equation. Mathematische Annalen, 2014, 358, 573-607.	1.4	27
16	Global dynamics above the ground state energy for the one-dimensional NLKG equation. Mathematische Zeitschrift, 2012, 272, 297-316.	0.9	20
17	Semiclassical Low Energy Scattering for One-Dimensional SchrĶdinger Operators with Exponentially Decaying Potentials. Annales Henri Poincare, 2012, 13, 1371-1426.	1.7	7
18	Global dynamics above the ground state energy for the cubic NLS equation in 3D. Calculus of Variations and Partial Differential Equations, 2012, 44, 1-45.	1.7	55

WILHELM SCHLAG

#	Article	IF	CITATIONS
19	Global Dynamics Above the Ground State for the Nonlinear Klein–Gordon Equation Without a Radial Assumption. Archive for Rational Mechanics and Analysis, 2012, 203, 809-851.	2.4	31
20	On Pointwise Decay of Linear Waves on a Schwarzschild Black Hole Background. Communications in Mathematical Physics, 2012, 309, 51-86.	2.2	70
21	On resonances and the formation of gaps in the spectrum of quasi-periodic Schr¶dinger equations. Annals of Mathematics, 2011, 173, 337-475.	4.2	33
22	A proof of Price's Law on Schwarzschild black hole manifolds for all angular momenta. Advances in Mathematics, 2011, 226, 484-540.	1.1	49
23	Two Erdős problems on lacunary sequences: Chromatic number and Diophantine approximation. Bulletin of the London Mathematical Society, 2010, 42, 295-300.	0.8	26
24	Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions. Forum Mathematicum, 2009, 21, .	0.7	53
25	Decay for the wave and Schrödinger evolutions on manifolds with conical ends, Part I. Transactions of the American Mathematical Society, 2009, 362, 19-52.	0.9	26
26	Decay for the wave and SchrĶdinger evolutions on manifolds with conical ends, Part II. Transactions of the American Mathematical Society, 2009, 362, 289-318.	0.9	15
27	Slow blow-up solutions for the H1(R3) critical focusing semilinear wave equation. Duke Mathematical Journal, 2009, 147, .	1.5	99
28	Fine Properties of the Integrated Density of States and a Quantitative Separation Property of the Dirichlet Eigenvalues. Geometric and Functional Analysis, 2008, 18, 755-869.	1.8	57
29	Renormalization and blow up for charge one equivariant critical wave maps. Inventiones Mathematicae, 2008, 171, 543-615.	2.5	134
30	Semiclassical analysis of low and zero energy scattering for one-dimensional Schrödinger operators with inverse square potentials. Journal of Functional Analysis, 2008, 255, 2321-2362.	1.4	8
31	On the focusing critical semi-linear wave equation. American Journal of Mathematics, 2007, 129, 843-913.	1.1	62
32	Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. Journal of the American Mathematical Society, 2006, 19, 815-920.	3.9	79
33	Agmon-Kato-Kuroda theorems for a large class of perturbations. Duke Mathematical Journal, 2006, 131, 397.	1.5	43
34	Dispersive estimates for SchrĶdinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II. Journal D'Analyse Mathematique, 2006, 99, 199-248.	0.8	40
35	Dispersive analysis of charge transfer models. Communications on Pure and Applied Mathematics, 2005, 58, 149-216.	3.1	71
36	Dispersive Estimates for SchrĶdinger Operators in Dimension Two. Communications in Mathematical Physics, 2005, 257, 87-117.	2.2	66

WILHELM SCHLAG

#	Article	IF	CITATIONS
37	On Schrödinger Operators with Dynamically Defined Potentials. Moscow Mathematical Journal, 2005, 5, 577-612.	0.4	4
38	Dispersive Estimates for Schrï;½/2dinger Operators in Dimensions One and Three. Communications in Mathematical Physics, 2004, 251, 157-178.	2.2	146
39	Time decay for solutions of Schr�dinger equations with rough and time-dependent potentials. Inventiones Mathematicae, 2004, 155, 451-513.	2.5	226
40	Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I. Dynamics of Partial Differential Equations, 2004, 1, 359-379.	0.9	45
41	Frequency concentration and location lengths for the anderson model at small disorders. Journal D'Analyse Mathematique, 2002, 88, 173-220.	0.8	11
42	Bernoulli convolutions and an intermediate value theorem for entropies ofK-partitions. Journal D'Analyse Mathematique, 2002, 87, 337-367.	0.8	5
43	Anderson localization for Schrödinger operators on Z2 with quasi-periodic potential. Acta Mathematica, 2002, 188, 41-86.	3.9	67
44	Anderson Localization for Schrödinger Operators on â,,¤vith Potentials Given by the Skew–Shift. Communications in Mathematical Physics, 2001, 220, 583-621.	2.2	61
45	On the Integrated Density of States for SchrĶdinger Operators on â"≌ with Quasi Periodic Potential. Communications in Mathematical Physics, 2001, 223, 47-65.	2.2	11
46	Holder Continuity of the Integrated Density of States for Quasi-Periodic Schrodinger Equations and Averages of Shifts of Subharmonic Functions. Annals of Mathematics, 2001, 154, 155.	4.2	141
47	Anderson Localization for Schrödinger Operators on â,,¤vith Strongly Mixing Potentials. Communications in Mathematical Physics, 2000, 215, 143-175.	2.2	37
48	Longer Life and Population Growth. Vie plus longue et croissance demographique. El aumento del numero de anos de vida y el crecimiento de la poblacion. Population and Development Review, 1999, 25, 741-747.	2.1	8
49	A Geometric Inequality with Applications to the Kakeya Problem in Three Dimensions. Geometric and Functional Analysis, 1998, 8, 606-625.	1.8	11
50	Decay Estimates for the One-dimensional Wave Equation with an Inverse Power Potential. International Mathematics Research Notices, 0, , .	1.0	6
51	Generic and Non-Generic Behavior of Solutions to Defocusing Energy Critical Wave Equation with Potential in the Radial Case. International Mathematics Research Notices, 0, , rnw181.	1.0	2