Jiazhen Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5467109/publications.pdf

Version: 2024-02-01

623734 552781 27 1,258 14 26 citations h-index g-index papers 27 27 27 1650 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ternary intermetallic LaCoSi as a catalyst for N2 activation. Nature Catalysis, 2018, 1, 178-185.	34.4	221
2	Natural van der Waals heterostructural single crystals with both magnetic and topological properties. Science Advances, 2019, 5, eaax9989.	10.3	193
3	Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nature Communications, 2019, 10, 2284.	12.8	159
4	Intermetallic Electride Catalyst as a Platform for Ammonia Synthesis. Angewandte Chemie - International Edition, 2019, 58, 825-829.	13.8	104
5	Computational Prediction of Boron-Based MAX Phases and MXene Derivatives. Chemistry of Materials, 2020, 32, 6947-6957.	6.7	89
6	Tiered Electron Anions in Multiple Voids of LaScSi and Their Applications to Ammonia Synthesis. Advanced Materials, 2017, 29, 1700924.	21.0	85
7	Intermetallic Electride Catalyst as a Platform for Ammonia Synthesis. Angewandte Chemie, 2018, 131, 835.	2.0	70
8	Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator*. Chinese Physics Letters, 2020, 37, 066401.	3.3	50
9	Dissociative and Associative Concerted Mechanism for Ammonia Synthesis over Co-Based Catalyst. Journal of the American Chemical Society, 2021, 143, 12857-12866.	13.7	50
10	Toward 2D Magnets in the (MnBi ₂ Te ₃) <i>_n</i> Bulk Crystal. Advanced Materials, 2020, 32, e2001815.	21.0	45
11	Acid-durable electride with layered ruthenium for ammonia synthesis: boosting the activity via selective etching. Chemical Science, 2019, 10, 5712-5718.	7.4	42
12	Unique Catalytic Mechanism for Ru-Loaded Ternary Intermetallic Electrides for Ammonia Synthesis. Journal of the American Chemical Society, 2022, 144, 8683-8692.	13.7	38
13	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Mith/Mith/Math/Mith/Math/Mith/Math/Mith/Mith/Mith/Mith/Mith/Mith/Mith/Mi	3.2	30
14	Structure and thermoelectric properties of the n-type clathrate Ba8Cu5.1Ge40.2Sn0.7. Journal of Materials Chemistry A, 2015, 3, 19100-19106.	10.3	17
15	Low-Temperature Physical Properties of Ba8Ni x Ge46â^'x (xÂ=Â3,Â4,Â6). Journal of Electronic Materials, 2012, 41, 1177-1180.	2.2	10
16	Heat capacity studies on rattling vibrations in Ba–TM–Ge type I clathrates. Journal of Physics and Chemistry of Solids, 2012, 73, 1521-1523.	4.0	8
17	Systematic studies on anharmonicity of rattling phonons in type-I clathrates by low-temperature heat capacity measurements. Physical Review B, 2014, 89, .	3.2	8

Interlayer states arising from anionic electrons in the honeycomb-lattice-based compounds AeAlSi () Tj ETQq0 0 0 rg8T /Overlock 10 Tf 5

#	Article	IF	Citations
19	Unification of the low-energy excitation peaks in the heat capacity that appears in clathrates. Physical Review B, 2016, 93, .	3.2	7
20	Facile Synthesis of $Ti \cdot sub \cdot 2 \cdot /sub \cdot AC$ (A = Zn, Al, In, and Ga) MAX Phases by Hydrogen Incorporation into Crystallographic Voids. Journal of Physical Chemistry Letters, 2021, 12, 11245-11251.	4.6	6
21	Crystal Structure Built from a GeO ₆ –GeO ₅ Polyhedra Network with High Thermal Stability: β–SrGe ₂ O ₅ . ACS Applied Electronic Materials, 2019, 1, 1989-1993.	4.3	5
22	Pseudogap Control of Physical and Chemical Properties in CeFeSi-Type Intermetallics. Inorganic Chemistry, 2019, 58, 2848-2855.	4.0	4
23	Anomalous diamagnetism of electride electrons in transition metal silicides. Physical Review B, 2021, 103, .	3.2	4
24	Single Crystal Structure Study of Type I Clathrate $\frac{K}_{8}hbox \{K\}_{9}hbox \{Sn\}_{42}$ K 8 Zn 4 Sn 42 and $\frac{K}_{9}hbox \{K\}_{9}hbox \{Sn\}_{38}$ K 8 In 8 Sn 38. Journal of Electronic Materials, 2017, 46, 2765-2769.	2.2	3
25	Low-Temperature Physical and Thermoelectric Properties of Ba8Ni5Ge41. Journal of Electronic Materials, 2013, 42, 2025-2029.	2.2	1
26	Site occupancy preference, electrical transport property and thermoelectric performance of Ba ₈ Cu _{6a^'x} Ge _{40+x} single crystals grown by using different metal fluxes. Materials Advances, 2020, 1, 2953-2963.	5.4	1
27	Gap Structure of the Overdoped Iron-Pnictide Superconductor Ba(Fe0.942Ni0.058)2As2: A Low-Temperature Specific-Heat Study. Advances in Condensed Matter Physics, 2015, 2015, 1-5.	1.1	O