
David Kohlstedt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5467010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Limits on lithospheric stress imposed by laboratory experiments. Journal of Geophysical Research, 1980, 85, 6248-6252.	3.3	1,589
2	Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 1996, 144, 93-108.	1.8	1,423
3	Strength of the lithosphere: Constraints imposed by laboratory experiments. Journal of Geophysical Research, 1995, 100, 17587-17602.	3.3	1,360
4	Solubility of water in the α, β and γ phases of (Mg,Fe) 2 SiO 4. Contributions To Mineralogy and Petrology, 1996, 123, 345-357.	1.2	861
5	Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. Geophysical Monograph Series, 2003, , 83-105.	0.1	780
6	Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime. Journal of Geophysical Research, 2000, 105, 21457-21469.	3.3	499
7	Melt Segregation and Strain Partitioning: Implications for Seismic Anisotropy and Mantle Flow. Science, 2003, 301, 1227-1230.	6.0	451
8	Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime. Journal of Geophysical Research, 2000, 105, 21471-21481.	3.3	426
9	Diffusion of hydrogen in olivine: Implications for water in the mantle. Journal of Geophysical Research, 1990, 95, 5079-5088.	3.3	394
10	Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime. Journal of Geophysical Research, 1995, 100, 1981-2001.	3.3	386
11	The role of water in the deformation of olivine single crystals. Journal of Geophysical Research, 1985, 90, 11319-11333.	3.3	371
12	Low-stress high-temperature creep in olivine single crystals. Journal of Geophysical Research, 1974, 79, 2045-2051.	3.3	354
13	Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime. Journal of Geophysical Research, 1995, 100, 15441-15449.	3.3	281
14	Highâ€ŧemperature creep of olivine single crystals 1. Mechanical results for buffered samples. Journal of Geophysical Research, 1991, 96, 2441-2463.	3.3	272
15	Diffusion of Hydrogen and Intrinsic Point Defects in Olivine. Zeitschrift Fur Physikalische Chemie, 1998, 207, 147-162.	1.4	254
16	Stress-driven melt segregation in partially molten rocks. Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	1.0	203
17	Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred orientation. Journal of Geophysical Research, 2011, 116, .	3.3	197
18	New Technique for Decorating Dislocations in Olivine. Science, 1976, 191, 1045-1046.	6.0	195

#	Article	IF	CITATIONS
19	Laboratory study of dislocation climb and diffusion in olivine. Journal of Geophysical Research, 1973, 78, 5961-5971.	3.3	187
20	Substantial hydrogen solubility in olivine and implications for water storage in the mantle. Nature, 1992, 357, 672-674.	13.7	187
21	Solubility of hydrogen in olivine: dependence on temperature and iron content. Contributions To Mineralogy and Petrology, 2004, 147, 155-161.	1.2	186
22	Rheology and structure of olivineâ€basalt partial melts. Journal of Geophysical Research, 1986, 91, 9315-9323.	3.3	181
23	Shearing Melt Out of the Earth: An Experimentalist's Perspective on the Influence of Deformation on Melt Extraction. Annual Review of Earth and Planetary Sciences, 2009, 37, 561-593.	4.6	169
24	Grain boundaries as reservoirs of incompatible elements in the Earth's mantle. Nature, 2004, 427, 699-703.	13.7	163
25	Deformationâ€induced microstructures, paleopiezometers, and differential stresses in deeply eroded fault zones. Journal of Geophysical Research, 1980, 85, 6269-6285.	3.3	154
26	RHEOLOGY OF PARTIALLY MOLTEN MANTLE ROCKS. Annual Review of Earth and Planetary Sciences, 1996, 24, 41-62.	4.6	150
27	Experimental constraints on the strength of the lithospheric mantle. Journal of Geophysical Research, 2010, 115, .	3.3	136
28	Influence of deformation on melt topology in peridotites. Journal of Geophysical Research, 1997, 102, 10257-10271.	3.3	133
29	Melt distribution in mantle rocks deformed in shear. Geophysical Research Letters, 1999, 26, 1505-1508.	1.5	130
30	The transition from porous to channelized flow due to melt/rock reaction during melt migration. Geophysical Research Letters, 1994, 21, 145-148.	1.5	125
31	Stress-driven Melt Segregation and Strain Partitioning in Partially Molten Rocks: Effects of Stress and Strain. Journal of Petrology, 2007, 48, 2379-2406.	1.1	122
32	Natural deformation and recrystallization of some intermediate plagioclase feldspars. Tectonophysics, 1985, 111, 107-131.	0.9	118
33	An interconnected network of core-forming melts produced by shear deformation. Nature, 2000, 403, 883-886.	13.7	115
34	The Role of Water in High-Temperature Rock Deformation. Reviews in Mineralogy and Geochemistry, 2006, 62, 377-396.	2.2	115
35	Influence of protons on Fe-Mg interdiffusion in olivine. Journal of Geophysical Research, 2005, 110, .	3.3	112
36	Rheology of Rocks. AGU Reference Shelf, 0, , 148-165.	0.6	101

#	Article	IF	CITATIONS
37	Protracted fabric evolution in olivine: Implications for the relationship among strain, crystallographic fabric, and seismic anisotropy. Earth and Planetary Science Letters, 2014, 387, 157-168.	1.8	99
38	The influence of microstructure on deformation of olivine in the grainâ€boundary sliding regime. Journal of Geophysical Research, 2012, 117, .	3.3	94
39	Differential stress determined from deformationâ€induced microstructures of the Moine Thrust Zone. Journal of Geophysical Research, 1979, 84, 7495-7509.	3.3	92
40	Diffusional Creep and Kinetic Demixing in Yttria-Stabilized Zirconia. Journal of the American Ceramic Society, 1987, 70, 531-536.	1.9	92
41	Microscratch analysis of the work of adhesion for Pt thin films on NiO. Journal of Materials Research, 1992, 7, 1126-1132.	1.2	87
42	Effect of iron content on the creep behavior of olivine: 1. Anhydrous conditions. Earth and Planetary Science Letters, 2009, 287, 229-240.	1.8	86
43	Water weakening of clinopyroxene in the dislocation creep regime. Journal of Geophysical Research, 2006, 111, .	3.3	78
44	Laboratory measurements of the viscous anisotropy of olivine aggregates. Nature, 2012, 492, 415-418.	13.7	77
45	Analysis of dislocations in some naturally deformed plagioclase feldspars. Physics and Chemistry of Minerals, 1984, 11, 153-160.	0.3	72
46	Continuous microindentation of passivating surfaces. Journal of Materials Research, 1993, 8, 685-688.	1.2	72
47	Distribution of the glass phase in hot-pressed, olivine-basalt aggregates: An electron microscopy study. Contributions To Mineralogy and Petrology, 1982, 81, 253-261.	1.2	70
48	Sintering of olivine and olivine-basalt aggregates. Physics and Chemistry of Minerals, 1984, 11, 5-16.	0.3	70
49	Chemical Diffusion in Titanium Carbide Crystals. Journal of Applied Physics, 1970, 41, 4476-4484.	1.1	69
50	Chemistry of grain boundaries in mantle rocks. American Mineralogist, 2003, 88, 1015-1019.	0.9	66
51	Dependence of dislocation creep of dunite on oxygen fugacity: Implications for viscosity variations in Earth's mantle. Journal of Geophysical Research, 2011, 116, .	3.3	65
52	Viscous Energy Dissipation and Strain Partitioning in Partially Molten Rocks. Journal of Petrology, 2005, 46, 2569-2592.	1.1	64
53	An electron microscopy study of naturally occurring oxidation produced precipitates in iron-bearing olivines. Contributions To Mineralogy and Petrology, 1975, 53, 13-24.	1.2	63
54	Structure, Rheology and Permeability of Partially Molten Rocks at Low Melt Fractions. Geophysical Monograph Series, 0, , 103-121.	0.1	61

#	Article	IF	CITATIONS
55	Stress-driven Melt Segregation in Partially Molten Olivine-rich Rocks Deformed in Torsion. Journal of Petrology, 2010, 51, 21-42.	1.1	60
56	Effect of H+ on Fe–Mg interdiffusion in olivine, (Fe,Mg)2SiO4. Applied Physics Letters, 2004, 85, 209-211.	1.5	58
57	Transmission electron microscopy investigation of the defect microstructure of four natural orthopyroxenes. Contributions To Mineralogy and Petrology, 1973, 42, 169-180.	1.2	56
58	Rheology of olivine and the strength of the lithosphere. Geophysical Research Letters, 1990, 17, 9-12.	1.5	56
59	Transient creep of olivine: Point-defect relaxation times. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1988, 57, 779-789.	0.7	53
60	Melt migration in a silicate liquidâ€olivine system: An experimental test of compaction theory. Geophysical Research Letters, 1990, 17, 2101-2104.	1.5	53
61	Metal-silicate segregation in deforming dunitic rocks. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	53
62	A first-principles investigation of hydrous defects and IR frequencies in forsterite: The case for Si vacancies. American Mineralogist, 2011, 96, 1475-1479.	0.9	53
63	Structural width of low-angle grain boundaries in olivine. Physics and Chemistry of Minerals, 1983, 9, 133-138.	0.3	51
64	Metal-ceramic interfacial fracture resistance using the continuous microscratch technique. Thin Solid Films, 1993, 223, 269-275.	0.8	51
65	Interfacial energies for quartz and albite in pelitic schist. Contributions To Mineralogy and Petrology, 2002, 143, 664-672.	1.2	50
66	Experimental constraints on the electrical anisotropy of the lithosphere–asthenosphere system. Nature, 2015, 522, 202-206.	13.7	50
67	Low-temperature syntheses of olivine and forsterite facilitated by hydrogen peroxide. Chemistry of Materials, 1991, 3, 692-698.	3.2	49
68	Water weakening of clinopyroxenite in diffusion creep. Journal of Geophysical Research, 2005, 110, .	3.3	48
69	Faulted dipoles in germanium A high-resolution transmission electron microscopy study. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1980, 42, 103-121.	0.7	47
70	Reply to comment by P. Duval and M. Montagnat on "Superplastic deformation of ice: Experimental observations― Journal of Geophysical Research, 2002, 107, ECV 17-1-ECV 17-5.	3.3	47
71	Equilibrium interface segregation in the diopside–forsterite system I: Analytical techniques, thermodynamics, and segregation characteristics. Geochimica Et Cosmochimica Acta, 2007, 71, 1266-1280.	1.6	47
72	Electron Diffraction and Microscopy Studies of the Structure of Grain Boundaries in Al2O3. Journal of the American Ceramic Society, 1980, 63, 623-627.	1.9	45

#	Article	IF	CITATIONS
73	Hydrolytic weakening in olivine single crystals. Journal of Geophysical Research: Solid Earth, 2017, 122, 3465-3479.	1.4	45
74	Crystallographic Preferred Orientation of Olivine in Sheared Partially Molten Rocks: The Source of the "a Switch― Geochemistry, Geophysics, Geosystems, 2018, 19, 316-336.	1.0	44
75	Lowâ€Temperature Plasticity in Olivine: Grain Size, Strain Hardening, and the Strength of the Lithosphere. Journal of Geophysical Research: Solid Earth, 2019, 124, 5427-5449.	1.4	44
76	Continuous microscratch measurements of the practical and true works of adhesion for metal/ceramic systems. Journal of Materials Research, 1996, 11, 3133-3145.	1.2	43
77	Equilibrium interface segregation in the diopside–forsterite system II: Applications of interface enrichment to mantle geochemistry. Geochimica Et Cosmochimica Acta, 2007, 71, 1281-1289.	1.6	43
78	Experimental deformation of olivine single crystals at lithospheric temperatures. Geophysical Research Letters, 2009, 36, .	1.5	42
79	The dislocation structure of experimentally deformed marble. Contributions To Mineralogy and Petrology, 1977, 59, 293-306.	1.2	41
80	Dislocation creep accommodated by grain boundary sliding in dunite. Journal of Earth Science (Wuhan, China), 2010, 21, 541-554.	1.1	41
81	Stress-driven Melt Segregation in Partially Molten Feldspathic Rocks. Journal of Petrology, 2010, 51, 9-19.	1.1	41
82	Rutherford Backscattering Spectroscopy Study of the Kinetics of Oxidation of (Mg, Fe)2SiO4. Journal of the American Ceramic Society, 1988, 71, 540-545.	1.9	38
83	Reaction infiltration instabilities in experiments on partially molten mantle rocks. Geology, 2015, 43, 575-578.	2.0	38
84	Rheological Weakening of OlivineÂ+ÂOrthopyroxene Aggregates Due To Phase Mixing: Part 2. Microstructural Development. Journal of Geophysical Research: Solid Earth, 2017, 122, 7597-7612.	1.4	38
85	State-Variable Analysis of Inelastic Deformation of TiC Single Crystals. Journal of the American Ceramic Society, 1987, 70, 315-320.	1.9	37
86	Influence of hydrogen on Fe–Mg interdiffusion in (Mg,Fe)O and implications for Earth's lower mantle. Contributions To Mineralogy and Petrology, 2007, 154, 279-289.	1.2	37
87	Ice-age ice-sheet rheology: constraints from the Last Glacial Maximum form of the Laurentide ice sheet. Annals of Glaciology, 2000, 30, 163-176.	2.8	36
88	Continuous microscratch measurements of thin film adhesion strengths. Journal of Adhesion Science and Technology, 1993, 7, 1279-1292.	1.4	32
89	Deformation-induced metal melt networks in silicates: Implications for core–mantle interactions in planetary bodies. Earth and Planetary Science Letters, 2006, 245, 571-580.	1.8	32
90	Experimental Evidence for the Effect of Chemical Environment Upon the Creep Rate of Olivine. Geophysical Monograph Series, 0, , 171-184.	0.1	31

#	Article	IF	CITATIONS
91	Viscous anisotropy of textured olivine aggregates, Part 1: Measurement of the magnitude and evolution of anisotropy. Earth and Planetary Science Letters, 2016, 445, 92-103.	1.8	31
92	Effect of water on rheological properties of garnet at high temperatures and pressures. Earth and Planetary Science Letters, 2013, 379, 158-165.	1.8	30
93	Role of dynamic grain boundary wetting in fluid circulation beneath volcanic arcs. Geophysical Research Letters, 2006, 33, .	1.5	29
94	Rheological Weakening of OlivineÂ+ÂOrthopyroxene Aggregates Due to Phase Mixing: 1. Mechanical Behavior. Journal of Geophysical Research: Solid Earth, 2017, 122, 7584-7596.	1.4	29
95	Observation of dissociated dislocations in deformed olivine. Philosophical Magazine and Journal, 1976, 34, 653-658.	1.8	28
96	High-temperature creep of olivine single crystals III. Mechanical results for unbuffered samples and creep mechanisms. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1992, 66, 1149-1181.	0.7	28
97	Electron irradiation damage in natural quartz grains. Physics and Chemistry of Minerals, 1981, 7, 110-116.	0.3	27
98	Evolution of the rheological and microstructural properties of olivine aggregates during dislocation creep under hydrous conditions. Journal of Geophysical Research: Solid Earth, 2016, 121, 92-113.	1.4	26
99	Reaction Infiltration Instabilities in Mantle Rocks: an Experimental Investigation. Journal of Petrology, 2017, 58, 979-1003.	1.1	25
100	Creep of Fe ₂ SiO ₄ and Co ₂ SiO ₄ single crystals in controlled thermodynamic environments. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1985, 51, 79-93.	0.7	24
101	Creep behavior of Feâ€bearing olivine under hydrous conditions. Journal of Geophysical Research: Solid Earth, 2015, 120, 6039-6057.	1.4	24
102	Creep of (Mg, Fe)O single crystals. Journal of Materials Science, 1988, 23, 3550-3557.	1.7	23
103	Cation stacking faults in magnesium germanate spinel. Physics and Chemistry of Minerals, 1981, 7, 241-245.	0.3	21
104	Experimental Studies of Shear Deformation of Mantle Materials: Towards Structural Geology of the Mantle. Pure and Applied Geophysics, 1998, 151, 589-603.	0.8	20
105	Experimental investigation of the creep behavior of MgO at high pressures. Physics of the Earth and Planetary Interiors, 2008, 170, 170-175.	0.7	19
106	High-temperature stability of San Carlos olivine. Contributions To Mineralogy and Petrology, 1987, 95, 226-230.	1.2	18
107	Secondary dislocations in [011] tilt boundaries in germanium. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1988, 57, 383-409.	0.7	18
108	Systematic distribution of incompatible elements in mantle peridotite: importance of intra- and inter-granular melt-like components. Contributions To Mineralogy and Petrology, 2009, 158, 149-167.	1.2	17

#	Article	IF	CITATIONS
109	An experimental study of the effects of surface tension in homogenizing perturbations in melt fraction. Earth and Planetary Science Letters, 2011, 307, 349-360.	1.8	17
110	Experimental test of the viscous anisotropy hypothesis for partially molten rocks. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12616-12620.	3.3	17
111	Rheological Weakening of OlivineÂ+ÂOrthopyroxene Aggregates Due to Phase Mixing: Effects of Orthopyroxene Volume Fraction. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019888.	1.4	17
112	Manganese olivine I: Electrical conductivity. Physics and Chemistry of Minerals, 1995, 22, 489.	0.3	16
113	Partial Melting and Deformation. Reviews in Mineralogy and Geochemistry, 2002, 51, 121-135.	2.2	16
114	An experimental study of pressure shadows in partially molten rocks. Earth and Planetary Science Letters, 2013, 382, 77-84.	1.8	16
115	High-Temperature Creep of Silicate Olivines. , 1984, , 251-280.		15
116	Inelastic deformation of (Ti, V)C alloys. Journal of Materials Science, 1986, 21, 2356-2364.	1.7	15
117	Chapter 3 Influence of Basaltic Melt on the Creep of Polycrystalline Olivine under Hydrous Conditions. International Geophysics, 1994, 57, 37-53.	0.6	14
118	Direct shear of olivine single crystals. Earth and Planetary Science Letters, 2016, 455, 140-148.	1.8	14
119	Investigation of the Charge Distribution in Titanium Carbide Using Electromigration. Physical Review B, 1971, 3, 293-305.	1.1	13
120	High-temperature deformation of forsterite single crystals doped with vanadium. Physics and Chemistry of Minerals, 1986, 13, 351-356.	0.3	13
121	Dislocation density: stress relationships in natural and synthetic sodium chloride. Tectonophysics, 1988, 148, 147-161.	0.9	13
122	Chemical analysis of grain boundaries in an olivine-basalt aggregate using high-resolution, analytical electron microscopy. Geophysical Monograph Series, 1990, , 211-218.	0.1	13
123	Strength and deformation of planetary lithospheres. , 2009, , 397-456.		13
124	Experimental investigation of the creep behavior of garnet at high temperatures and pressures. Journal of Earth Science (Wuhan, China), 2010, 21, 532-540.	1.1	13
125	Observations of grain size sensitive power law creep of olivine aggregates over a large range of latticeâ€preferred orientation strength. Journal of Geophysical Research: Solid Earth, 2016, 121, 506-516.	1.4	13
126	Laboratory investigation of mechanisms for phase mixing in olivine + ferropericlase aggregates. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170417.	1.6	13

#	Article	IF	CITATIONS
127	Reactive processing of titanium carbide with titanium. Journal of Materials Science, 1984, 19, 1229-1241.	1.7	12
128	Internal Friction in Lithium Aluminosilicate Glass-Ceramics. Journal of the American Ceramic Society, 1994, 77, 1169-1177.	1.9	12
129	Effect of metallic melt on the viscosity of peridotite. Earth and Planetary Science Letters, 2007, 260, 355-360.	1.8	12
130	Brittle-Region Slip Systems in the Transition-Metal Carbides. Physica Status Solidi A, 1971, 6, K25-K28.	1.7	11
131	Reactive processing of titanium carbide with titanium. Journal of Materials Science, 1984, 19, 1242-1250.	1.7	11
132	TEM observation of dissociated dislocations with b = [010] in naturally deformed olivine. Physics of the Earth and Planetary Interiors, 1993, 78, 131-137.	0.7	11
133	High-temperature creep and kinetic decomposition of Ni2SiO4. Physics and Chemistry of Minerals, 1994, 21, 234.	0.3	11
134	A Subgrain‣ize Piezometer Calibrated for EBSD. Geophysical Research Letters, 2020, 47, e2020GL090056.	1.5	11
135	Effect of gamma Radiation on Plastic Flow of NaCl. Journal of the American Ceramic Society, 1981, 64, 105-108.	1.9	10
136	Creep Behavior of Single Crystals of Vanadium-Doped Forsterite. Journal of the American Ceramic Society, 1986, 69, 770-774.	1.9	10
137	Viscous anisotropy of textured olivine aggregates: 2. Micromechanical model. Journal of Geophysical Research: Solid Earth, 2016, 121, 7137-7160.	1.4	10
138	Diffusion Creep of Enstatite at High Pressures Under Hydrous Conditions. Journal of Geophysical Research: Solid Earth, 2017, 122, 7718-7728.	1.4	10
139	Solâ^'Gel Synthesis and Characterization of Magnesium Silicate Thin Films. Chemistry of Materials, 1997, 9, 2567-2576.	3.2	9
140	Effect of iron content on the creep behavior of Olivine: 2. Hydrous conditions. Physics of the Earth and Planetary Interiors, 2018, 278, 26-33.	0.7	9
141	Microscale and nanoscale strain mapping techniques applied to creep of rocks. Solid Earth, 2017, 8, 751-765.	1.2	8
142	Hydrogen incorporation in plagioclase. Geochimica Et Cosmochimica Acta, 2020, 277, 87-110.	1.6	8
143	Inelastic deformation of (Ti, V)C alloys. Journal of Materials Science, 1986, 21, 2347-2355.	1.7	7
144	Manganese olivine II: point defect relaxation. Physics and Chemistry of Minerals, 1998, 25, 122-129.	0.3	7

#	Article	IF	CITATIONS
145	Evolution of Microstructural Properties in Sheared Ironâ€Rich Olivine. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB019629.	1.4	7
146	Highâ€Temperature Rheology of Calcium Aluminosilicate (Anorthite) Glassâ€Ceramics under Uniaxial and Triaxial Loading. Journal of the American Ceramic Society, 2001, 84, 2617-2624.	1.9	6
147	Influence of Lithology on Reactive Melt Flow Channelization. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008937.	1.0	6
148	Natural deformation and recrystallization of some intermediate plagioclase feldspars—reply. Tectonophysics, 1986, 124, 363-364.	0.9	5
149	The effect of grain size and melt distributions on the rheology of partially molten olivine aggregates. Geological Society Special Publication, 2005, 245, 291-302.	0.8	5
150	Influence of Compaction Length on Radial Melt Segregation in Torsionally Deformed Partially Molten Rocks. Geochemistry, Geophysics, Geosystems, 2018, 19, 4400-4419.	1.0	5
151	Diffusion rates of hydrogen defect species associated with site-specific infrared spectral bands in natural olivine. Earth and Planetary Science Letters, 2022, 581, 117406.	1.8	5
152	High-resolution creep apparatus. Geophysical Monograph Series, 1990, , 235-238.	0.1	4
153	The role of protons in ionic diffusion in (Mg,ÂFe)O and (Mg,ÂFe)2SiO4. Journal of Materials Science, 2008, 43, 4693-4700.	1.7	4
154	Radial Melt Segregation During Extrusion of Partially Molten Rocks. Geochemistry, Geophysics, Geosystems, 2019, 20, 2985-2996.	1.0	4
155	Micro-Mechanical Characterization of Tantalum Nitride Thin Films on Sapphire Substrates. Materials Research Society Symposia Proceedings, 1994, 343, 597.	0.1	3
156	Interaction of Slip Systems in Olivine. Geophysical Monograph Series, 0, , 185-193.	0.1	3
157	Continuous Microindentation and Microscratch Measurements of Metal-Ceramic Adhesive strengths. Materials Research Society Symposia Proceedings, 1991, 239, 591.	0.1	2
158	Adhesion of chromium metallization on alumina surfaces prepared by sol-gel techniques. Journal of Materials Science, 1991, 26, 1815-1820.	1.7	2
159	Continuous Microindentation of Passivated Surfaces in Surface Active Media. Materials Research Society Symposia Proceedings, 1993, 308, 543.	0.1	2
160	Low oxygen fugacity dependency for the deformation of partially molten lherzolite. Tectonophysics, 2012, 580, 114-123.	0.9	2
161	Experimental measurements of anisotropic viscosity in naturally sourced dunite with a preexisting CPO. Tectonophysics, 2021, 815, 228949.	0.9	2
162	Structure and Dissociation of 15° <110> Tilt Boundaries in Germanium. Materials Research Society Symposia Proceedings, 1983, 25, 299.	0.1	1

#	Article	IF	CITATIONS
163	Effect of Heat Treatment on Adhesion in the Cr/Al2O3 System. Materials Research Society Symposia Proceedings, 1993, 308, 659.	0.1	1
164	Structural Changes of a σ = 51 Tilt Boundary in Germanium During High Temperature Creep. Materials Research Society Symposia Proceedings, 1984, 41, 261.	0.1	0
165	Adhesion of Metals to Mixed Oxide Coatings (Al & Cr, Mo, OR W) Prepared by Spray Pyrolysis of Organometallics Materials Research Society Symposia Proceedings, 1988, 131, 453.	0.1	0
166	Adhesion in Metal-Ceramic Systems. Materials Research Society Symposia Proceedings, 1993, 308, 621.	0.1	0
167	Experimental Investigation on the Deformation and Dehydration Faulting of Antigorite in Subduction Zones. Acta Geologica Sinica, 2019, 93, 119-119.	0.8	0