Wen-Kui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5466515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. ACS Nano, 2017, 11, 2459-2469.	14.6	700
2	Strong Sulfur Binding with Conducting Magnéli-Phase Ti _{<i>n</i>} O _{2<i>n</i>–1} Nanomaterials for Improving Lithium–Sulfur Batteries. Nano Letters, 2014, 14, 5288-5294.	9.1	643
3	Sn ⁴⁺ Ion Decorated Highly Conductive Ti ₃ C ₂ MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance. ACS Nano, 2016, 10, 2491-2499.	14.6	632
4	Green and Facile Fabrication of Hollow Porous MnO/C Microspheres from Microalgaes for Lithium-Ion Batteries. ACS Nano, 2013, 7, 7083-7092.	14.6	493
5	3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy, 2017, 37, 177-186.	16.0	431
6	Solid-State Lithium–Sulfur Batteries Operated at 37 °C with Composites of Nanostructured Li ₇ La ₃ Zr ₂ O ₁₂ /Carbon Foam and Polymer. Nano Letters, 2017, 17, 2967-2972.	9.1	384
7	Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nature Energy, 2021, 6, 378-387.	39.5	282
8	In Situ Construction of a LiFâ€Enriched Interface for Stable Allâ€Solidâ€State Batteries and its Origin Revealed by Cryoâ€TEM. Advanced Materials, 2020, 32, e2000223.	21.0	278
9	In Situ Reactive Synthesis of Polypyrrole-MnO ₂ Coaxial Nanotubes as Sulfur Hosts for High-Performance Lithium–Sulfur Battery. Nano Letters, 2016, 16, 7276-7281.	9.1	271
10	A Conductive Molecular Framework Derived Li ₂ S/N,Pâ€Codoped Carbon Cathode for Advanced Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602876.	19.5	258
11	Efficient Activation of Li ₂ S by Transition Metal Phosphides Nanoparticles for Highly Stable Lithium–Sulfur Batteries. ACS Energy Letters, 2017, 2, 1711-1719.	17.4	252
12	Mg ₂ B ₂ O ₅ Nanowire Enabled Multifunctional Solid-State Electrolytes with High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance. Nano Letters, 2018, 18, 3104-3112.	9.1	245
13	Pillared MXene with Ultralarge Interlayer Spacing as a Stable Matrix for High Performance Sodium Metal Anodes. Advanced Functional Materials, 2019, 29, 1805946.	14.9	242
14	Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 9209.	6.7	232
15	Atomic Sulfur Covalently Engineered Interlayers of Ti ₃ C ₂ MXene for Ultraâ€Fast Sodiumâ€Ion Storage by Enhanced Pseudocapacitance. Advanced Functional Materials, 2019, 29, 1808107.	14.9	213
16	Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries. Energy Storage Materials, 2018, 10, 1-9.	18.0	208
17	Electrode Design for Lithium–Sulfur Batteries: Problems and Solutions. Advanced Functional Materials, 2020, 30, 1910375.	14.9	206
18	Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 3295.	10.3	205

#	Article	IF	CITATIONS
19	Nanocrystal-Constructed Mesoporous Single-Crystalline Co ₃ O ₄ Nanobelts with Superior Rate Capability for Advanced Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 5974-5980.	8.0	201
20	Nanostructured Host Materials for Trapping Sulfur in Rechargeable Li–S Batteries: Structure Design and Interfacial Chemistry. Small Methods, 2018, 2, 1700279.	8.6	201
21	Interface issues of lithium metal anode for <scp>highâ€energy</scp> batteries: Challenges, strategies, and perspectives. InformaÄnÃ-Materiály, 2021, 3, 155-174.	17.3	195
22	Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. Journal of Materials Chemistry A, 2018, 6, 7794-7806.	10.3	186
23	A review of biomass materials for advanced lithium–sulfur batteries. Chemical Science, 2019, 10, 7484-7495.	7.4	180
24	All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content. Journal of Power Sources, 2018, 391, 73-79.	7.8	168
25	Revisiting Scientific Issues for Industrial Applications of Lithium–Sulfur Batteries. Energy and Environmental Materials, 2018, 1, 196-208.	12.8	158
26	Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nature Communications, 2020, 11, 488.	12.8	158
27	An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Science Advances, 2020, 6, eaaz3112.	10.3	157
28	Biomass-based materials for green lithium secondary batteries. Energy and Environmental Science, 2021, 14, 1326-1379.	30.8	157
29	Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA cmâ^'2. Nano Energy, 2018, 45, 203-209.	16.0	153
30	Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 632-640.	10.3	151
31	Confining Sulfur in N-Doped Porous Carbon Microspheres Derived from Microalgaes for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 23782-23791.	8.0	148
32	Poly(ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: Enhanced electrochemical performance, mechanical property and interfacial stability. Journal of Power Sources, 2019, 412, 78-85.	7.8	141
33	Unraveling the Intra and Intercycle Interfacial Evolution of Li ₆ PS ₅ Clâ€Based Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2020, 10, 1903311.	19.5	141
34	lonic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 12934-12942.	10.3	126
35	Highly dispersed surface active species of Mn/Ce/TiW catalysts for high performance at low temperature NH3-SCR. Chemical Engineering Journal, 2017, 330, 1195-1202.	12.7	119
36	Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism. Journal of Materials Chemistry, 2012, 22, 10452.	6.7	109

#	Article	IF	CITATIONS
37	Bio-inspired fabrication of carbon nanotiles for high performance cathode of Li–S batteries. Journal of Materials Chemistry A, 2014, 2, 2290-2296.	10.3	102
38	Green synthesis of graphite from CO2 without graphitization process of amorphous carbon. Nature Communications, 2021, 12, 119.	12.8	93
39	Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries. Electrochimica Acta, 2015, 152, 286-293.	5.2	91
40	Silicon-Doped Argyrodite Solid Electrolyte Li ₆ PS ₅ 1 with Improved Ionic Conductivity and Interfacial Compatibility for High-Performance All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 41538-41545.	8.0	90
41	Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode. Energy Storage Materials, 2018, 15, 218-225.	18.0	88
42	TaC Nanowire/Activated Carbon Microfiber Hybrid Structures from Bamboo Fibers. Advanced Energy Materials, 2011, 1, 534-539.	19.5	87
43	Biomass derived Ni(OH)2@porous carbon/sulfur composites synthesized by a novel sulfur impregnation strategy based on supercritical CO2 technology for advanced Li-S batteries. Journal of Power Sources, 2018, 378, 73-80.	7.8	87
44	Construction of sheet–belt hybrid nanostructures from one-dimensional mesoporous TiO2(B) nanobelts and graphene sheets for advanced lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 2495.	10.3	78
45	Interfacial and Ionic Modulation of Poly (Ethylene Oxide) Electrolyte Via Localized Iodization to Enable Dendriteâ€Free Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	77
46	A generic bamboo-based carbothermal method for preparing carbide (SiC, B4C, TiC, TaC, NbC, TixNb1â^'xC,) Tj ET	ΓQq0 0 0 ι 8.7	rgBT /Overloc
47	TiC Nanorods Derived from Cotton Fibers: Chloride-Assisted VLS Growth, Structure, and Mechanical Properties. Crystal Growth and Design, 2011, 11, 4422-4426.	3.0	74
48	The effects of tungsten and hydrothermal aging in promoting NH3-SCR activity on V2O5/WO3-TiO2 catalysts. Applied Surface Science, 2018, 459, 639-646.	6.1	72
49	Biotemplating of phosphate hierarchical rechargeable LiFePO4/C spirulina microstructures. Journal of Materials Chemistry, 2011, 21, 6498.	6.7	71
50	Facile synthesis of porous Li2S@C composites as cathode materials for lithium–sulfur batteries. Journal of Power Sources, 2016, 306, 200-207.	7.8	71
51	Polyiodide-Shuttle Restricting Polymer Cathode for Rechargeable Lithium/Iodine Battery with Ultralong Cycle Life. ACS Applied Materials & Interfaces, 2018, 10, 17933-17941.	8.0	71
52	High-capacity SiO (0≤â‰≌) as promising anode materials for next-generation lithium-ion batteries. Journal of Alloys and Compounds, 2020, 842, 155774.	5.5	69
53	Biotemplated Fabrication of Sn@C Anode Materials Based on the Unique Metal Biosorption Behavior of Microalgae. ACS Applied Materials & amp; Interfaces, 2014, 6, 3696-3702.	8.0	67
54	Template-free synthesis of hollow α-Fe ₂ O ₃ microcubes for advanced lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 2307-2312.	10.3	66

#	Article	IF	CITATIONS
55	Lithium ion diffusion mechanism on the inorganic components of the solid–electrolyte interphase. Journal of Materials Chemistry A, 2021, 9, 10251-10259.	10.3	66
56	One-pot Biotemplate Synthesis of FeS 2 Decorated Sulfur-doped Carbon Fiber as High Capacity Anode for Lithium-ion Batteries. Electrochimica Acta, 2016, 209, 201-209.	5.2	63
57	2 D MXeneâ€based Energy Storage Materials: Interfacial Structure Design and Functionalization. ChemSusChem, 2020, 13, 1409-1419.	6.8	63
58	Multiscale Porous Carbon Nanomaterials for Applications in Advanced Rechargeable Batteries. Batteries and Supercaps, 2019, 2, 9-36.	4.7	56
59	Biotemplated synthesis of bark-structured TiC nanowires as Pt catalyst supports with enhanced electrocatalytic activity and durability for methanol oxidation. Journal of Materials Chemistry A, 2014, 2, 8003-8008.	10.3	54
60	Unprecedented Selfâ€Healing Effect of Li ₆ PS ₅ Clâ€Based Allâ€Solidâ€State Lithium Battery. Small, 2021, 17, e2101326.	10.0	54
61	Hydrogen bonding enhanced SiO ₂ /PEO composite electrolytes for solid-state lithium batteries. Journal of Materials Chemistry A, 2022, 10, 3400-3408.	10.3	54
62	Empowering Metal Phosphides Anode with Catalytic Attribute toward Superior Cyclability for Lithiumâ€lon Storage. Advanced Functional Materials, 2019, 29, 1809051.	14.9	52
63	TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 11842-11848.	8.0	51
64	Silicious nanowires enabled dendrites suppression and flame retardancy for advanced lithium metal anodes. Nano Energy, 2021, 82, 105723.	16.0	50
65	Enhancing Catalyzed Decomposition of Na ₂ CO ₃ with Co ₂ MnO _{<i>x</i>} Nanowire-Decorated Carbon Fibers for Advanced Na–CO ₂ Batteries. ACS Applied Materials & Interfaces, 2018, 10, 17240-17248.	8.0	49
66	Supercritical CO ₂ mediated incorporation of sulfur into carbon matrix as cathode materials towards high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 212-222.	10.3	49
67	In-situ construction of a Mg-modified interface to guide uniform lithium deposition for stable all-solid-state batteries. Journal of Energy Chemistry, 2021, 55, 272-278.	12.9	49
68	A fast-ion conducting interface enabled by aluminum silicate fibers for stable Li metal batteries. Chemical Engineering Journal, 2021, 408, 128016.	12.7	48
69	Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0.33La0.557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery. Rare Metals, 2022, 41, 1870-1879.	7.1	48
70	Platinum nano-interlayer enhanced interface for stable all-solid-state batteries observed <i>via</i> cryo-transmission electron microscopy. Journal of Materials Chemistry A, 2020, 8, 13541-13547.	10.3	47
71	Puffed Rice Carbon with Coupled Sulfur and Metal Iron for High-Efficiency Mercury Removal in Aqueous Solution. Environmental Science & amp; Technology, 2020, 54, 2539-2547.	10.0	46
72	A green and facile strategy for the low-temperature and rapid synthesis of Li ₂ S@PC–CNT cathodes with high Li ₂ S content for advanced Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 9906-9914.	10.3	45

#	Article	IF	CITATIONS
73	A new strategy for the construction of 3D TiO ₂ nanowires/reduced graphene oxide for high-performance lithium/sodium batteries. Journal of Materials Chemistry A, 2018, 6, 24256-24266.	10.3	43
74	Bio-templated fabrication of MnO nanoparticles in SiOC matrix with lithium storage properties. Chemical Engineering Journal, 2019, 359, 584-593.	12.7	43
75	Soybean Protein Fiber Enabled Controllable Li Deposition and a LiF-Nanocrystal-Enriched Interface for Stable Li Metal Batteries. Nano Letters, 2022, 22, 1374-1381.	9.1	41
76	Exploring the Energy Storage Mechanism of High Performance MnO ₂ Electrochemical Capacitor Electrodes: An In Situ Atomic Force Microscopy Study in Aqueous Electrolyte. Advanced Functional Materials, 2013, 23, 4745-4751.	14.9	39
77	Interfacial Reactions in Inorganic Allâ€Solidâ€State Lithium Batteries. Batteries and Supercaps, 2021, 4, 8-38.	4.7	39
78	Sulfur synchronously electrodeposited onto exfoliated graphene sheets as a cathode material for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 16513-16519.	10.3	37
79	High-content of sulfur uniformly embedded in mesoporous carbon: a new electrodeposition synthesis and an outstanding lithium–sulfur battery cathode. Journal of Materials Chemistry A, 2017, 5, 5905-5911.	10.3	37
80	Enhanced sulfide chemisorption by conductive Al-doped ZnO decorated carbon nanoflakes for advanced Li–S batteries. Nano Research, 2018, 11, 477-489.	10.4	36
81	Supercritical fluid assisted biotemplating synthesis of Si–O–C microspheres from microalgae for advanced Li-ion batteries. RSC Advances, 2016, 6, 69764-69772.	3.6	35
82	A Solar-Driven Flexible Electrochromic Supercapacitor. Materials, 2020, 13, 1206.	2.9	34
83	Synthesis of hierarchical porous carbon from metal carbonates towards high-performance lithium storage. Green Chemistry, 2018, 20, 1484-1490.	9.0	32
84	Mesoporous Fe ₃ O ₄ @C submicrospheres evolved by a novel self-corrosion mechanism for high-performance lithium-ion batteries. New Journal of Chemistry, 2014, 38, 2428-2434.	2.8	31
85	Synthesis and electrochemical performance of Li ₄ Ti ₅ O ₁₂ /TiO ₂ /C nanocrystallines for high-rate lithium ion batteries. RSC Advances, 2015, 5, 74774-74782.	3.6	31
86	H ₂ O-induced self-propagating synthesis of hierarchical porous carbon: a promising lithium storage material with superior rate capability and ultra-long cycling life. Journal of Materials Chemistry A, 2017, 5, 18221-18229.	10.3	30
87	Synthesis and electrochemical performance of poly(vinylidene fluoride)/SiO2 hybrid membrane for lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 519-527.	2.5	28
88	Well-dispersed ultrafine Mn ₃ O ₄ nanocrystals on reduced graphene oxide with high electrochemical Li-storage performance. New Journal of Chemistry, 2014, 38, 4743-4747.	2.8	26
89	Supercritical CO ₂ -assisted synthesis of 3D porous SiOC/Se cathode for ultrahigh areal capacity and long cycle life Li–Se batteries. Journal of Materials Chemistry A, 2018, 6, 24773-24782.	10.3	26
90	Toast-like porous carbon derived from one-step reduction of CaCO3 for electrochemical lithium storage. Carbon, 2018, 130, 559-565.	10.3	23

#	Article	IF	CITATIONS
91	Nickel-Based-Hydroxide-Wrapped Activated Carbon Cloth/Sulfur Composite with Tree-Bark-Like Structure for High-Performance Freestanding Sulfur Cathode. ACS Applied Energy Materials, 2018, 1, 1594-1602.	5.1	23
92	Improved high rate capability of Li[Li0.2Mn0.534Co0.133Ni0.133]O2 cathode material by surface modification with Co3O4. Journal of Alloys and Compounds, 2019, 783, 349-356.	5.5	22
93	Synthesis and electrochemical performance of nano TiO ₂ (B)-coated Li[Li _{0.2} Mn _{0.54} Co _{0.13} Ni _{0.13}]O ₂ cathode materials for lithium-ion batteries. New Journal of Chemistry, 2017, 41, 12962-12968.	2.8	21
94	Ultraefficient Conversion of CO ₂ into Morphology ontrolled Nanocarbons: A Sustainable Strategy toward Greenhouse Gas Utilization. Small, 2019, 15, e1902249.	10.0	21
95	Synthesis and electrochemical properties of LiMnPO4-modified Li[Li0.2Mn0.534Co0.133Ni0.133]O2 cathode material for Li-ion batteries. Electrochimica Acta, 2017, 235, 1-9.	5.2	19
96	Effects of Nd-modification on the activity and SO ₂ resistance of MnO _x /TiO ₂ catalysts for low-temperature NH ₃ -SCR. New Journal of Chemistry, 2018, 42, 12845-12852.	2.8	19
97	A Low-Cost and High-Efficiency Electrothermal Composite Film Composed of Hybrid Conductivity Fillers and Polymer Blends Matrix for High-Performance Plate Heater. Journal of Electronic Materials, 2021, 50, 3084-3094.	2.2	19
98	Green and Low-Temperature Synthesis of Foam-like Hierarchical Porous Carbon from CO ₂ as Superior Lithium Storage Material. ACS Applied Energy Materials, 2018, 1, 7123-7129.	5.1	17
99	Supercritical CO ₂ -Fluid-Assisted Synthesis of TiO ₂ Quantum Dots/Reduced Graphene Oxide Composites for Outstanding Sodium Storage Capability. ACS Applied Energy Materials, 2018, 1, 7213-7219.	5.1	17
100	Biological Metabolism Synthesis of Metal Oxides Nanorods from Bacteria as a Biofactory toward Highâ€Performance Lithiumâ€Ion Battery Anodes. Small, 2019, 15, e1902032.	10.0	17
101	A new magnesium hydride route to synthesize morphology-controlled Si/rGO nanocomposite towards high-performance lithium storage. Electrochimica Acta, 2020, 330, 135248.	5.2	17
102	Hierarchically assembled mesoporous carbon nanosheets with an ultra large pore volume for high-performance lithium–sulfur batteries. New Journal of Chemistry, 2019, 43, 1380-1387.	2.8	16
103	Functionally Modified Polyolefin-Based Separators for Lithium-Sulfur Batteries: Progress and Prospects. Frontiers in Energy Research, 2020, 8, .	2.3	16
104	Facile fabrication of red phosphorus/TiO ₂ composites for lithium ion batteries. RSC Advances, 2014, 4, 60914-60919.	3.6	15
105	A low temperature MgH2-AlCl3-SiO2 system to synthesize nano-silicon for high-performance Li-ion batteries. Chemical Engineering Journal, 2021, 406, 126805.	12.7	15
106	Graphene/TiO2 decorated N-doped carbon foam as 3D porous current collector for high loading sulfur cathode. Materials Research Bulletin, 2021, 135, 111129.	5.2	15
107	High-Performance All-Solid-State Lithium–Sulfur Batteries Enabled by Slurry-Coated Li6PS5Cl/S/C Composite Electrodes. Frontiers in Energy Research, 2021, 8, .	2.3	15
108	Importing Tin Nanoparticles into Biomassâ€Derived Silicon Oxycarbides with Highâ€Rate Cycling Capability Based on Supercritical Fluid Technology. Chemistry - A European Journal, 2019, 25, 7719-7725.	3.3	14

#	Article	IF	CITATIONS
109	Rose pollens as sustainable biotemplates for porous SiOC microellipsoids with enhanced lithium storage performance. Journal of Alloys and Compounds, 2020, 816, 152595.	5.5	14
110	Regulation of the Interfaces Between Argyrodite Solid Electrolytes and Lithium Metal Anode. Frontiers in Chemistry, 2022, 10, 837978.	3.6	14
111	Controllable synthesis and in situ TEM study of lithiation mechanism of high performance NaV ₃ O ₈ cathodes. Journal of Materials Chemistry A, 2015, 3, 3044-3050.	10.3	13
112	Supercritical CO2 assisted synthesis of sulfur-modified zeolites as high-efficiency adsorbents for Hg2+ removal from water. New Journal of Chemistry, 2018, 42, 3541-3550.	2.8	13
113	Argyrodite Solid Electrolyte-Integrated Ni-Rich Oxide Cathode with Enhanced Interfacial Compatibility for All-Solid-State Lithium Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 33361-33369.	8.0	13
114	Embedding submicron SiO2 into porous carbon as advanced lithium‒ion batteries anode with ultralong cycle life and excellent rate capability. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 227-233.	5.3	12
115	\hat{l}^2 -Cyclodextrin-modified porous ceramic membrane with enhanced ionic conductivity and thermal stability for lithium-ion batteries. Ionics, 2020, 26, 173-182.	2.4	12
116	Empowering polypropylene separator with enhanced polysulfide adsorption and reutilization ability for high-performance Li-S batteries. Materials Research Bulletin, 2021, 134, 111108.	5.2	12
117	Internal Electron Tunneling Enabled Ultrasensitive Position/Force Peapod Sensors. Nano Letters, 2015, 15, 7281-7287.	9.1	11
118	In-situ electrolytic synthesis and superior lithium storage capability of Ni–NiO/C nanocomposite by sacrificial nickel anode in molten carbonates. Journal of Alloys and Compounds, 2020, 834, 155111.	5.5	11
119	Hydrogen Pressure-Dependent Dehydrogenation Performance of the Mg(NH ₂) ₂ –2LiH–0.07KOH System. ACS Applied Materials & Interfaces, 2020, 12, 15255-15261.	8.0	10
120	One-pot synthesis of nanocrystalline SnS@tremella-like porous carbon by supercritical CO2 method for excellent sodium storage performance. Electrochimica Acta, 2021, 373, 137933.	5.2	10
121	Yttrium stabilized argyrodite solid electrolyte with enhanced ionic conductivity and interfacial stability for all-solid-state batteries. Journal of Power Sources, 2022, 543, 231846.	7.8	10
122	A flexible non-precious metal Fe-N/C catalyst for highly efficient oxygen reduction reaction. Nanotechnology, 2019, 30, 144001.	2.6	9
123	Lithium Sulfide as Cathode Materials for Lithium-Ion Batteries: Advances and Challenges. Journal of Chemistry, 2020, 2020, 1-17.	1.9	9
124	Lithium Batteries: Unraveling the Intra and Intercycle Interfacial Evolution of Li ₆ PS ₅ Clâ€Based Allâ€Solidâ€State Lithium Batteries (Adv. Energy Mater. 4/2020). Advanced Energy Materials, 2020, 10, 2070017.	19.5	9
125	Mechanochemical synthesis of carbon from CO2: Mechanism for milling process-dependent morphology of carbon. Journal of Alloys and Compounds, 2020, 830, 154681.	5.5	9
126	Sand/carbon composites as low-cost lithium storage materials with superior electrochemical performance. New Journal of Chemistry, 2019, 43, 4123-4129.	2.8	7

#	Article	IF	CITATIONS
127	Supercritical CO2 Synthesis of Freestanding Se1-xSx Foamy Cathodes for High-Performance Li-Se1-xSx Battery. Frontiers in Chemistry, 2021, 9, 738977.	3.6	7
128	<i>In Situ</i> Synthesis of a Si/CNTs/C Composite by Directly Reacting Magnesium Silicide with Lithium Carbonate for Enhanced Lithium Storage Capability. Energy & amp; Fuels, 2021, 35, 20386-20393.	5.1	7
129	Highly Efficient Synthesis of Silicon Nanowires from Molten Salt Electrolysis Cell with a Ceramic Diaphragm. Journal of Electronic Materials, 2021, 50, 5021.	2.2	6
130	Polybenzimidazole/Conductive Carbon Black Composite Driven at Low Voltage for High-Temperature Heaters. Journal of Electronic Materials, 2022, 51, 2652-2662.	2.2	5
131	Electrochemical lithium storage properties of desert sands. Ionics, 2018, 24, 2233-2239.	2.4	4
132	Rational design of highly efficient metal-polyaniline/carbon cloth catalyst towards enhanced oxygen reduction reaction. Ionics, 2020, 26, 5065-5073.	2.4	4
133	Tremella-like porous carbon derived from one-step electroreduction of molten carbonates with superior rate capability for sodium-ion batteries. Ionics, 2020, 26, 2899-2907.	2.4	4
134	Milling Time-Dependent Lithium/Sodium Storage Performance of Carbons Synthesized by a Mechanochemical Reaction. Energy & Fuels, 2021, 35, 4596-4603.	5.1	4
135	In situ electrical property characterization of individual nanostructures using a sliding probe inside a transmission electron microscope. , 2010, , .		2
136	Photoelectrochemical Properties of NiO Coupled with TiO2â^'x N x Thin Film Prepared by Magnetron Sputtering Method. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 852-857.	3.7	2
137	Facile and efficient synthesis of Li2Se particles towards high-areal capacity Li2Se cathode for advanced Li–Se battery. Sustainable Materials and Technologies, 2021, 29, e00288.	3.3	2
138	The Effect of Compaction Density of Sulfur/Carbon Cathodes on the Practical Application of Li-S Pouch Cells. Journal of Electronic Materials, 2022, 51, 4115-4124.	2.2	2
139	Photo-electrochemical Lithium Insertion Characteristics of Carbon Nanotubes Modified with SrTiO3 Photocatalyst. Chinese Journal of Chemical Physics, 2006, 19, 428-432.	1.3	1
140	A Facile Pre-Lithiated Strategy towards High-Performance Li2Se-LiTiO2 Composite Cathode for Li-Se Batteries. Nanomaterials, 2022, 12, 815.	4.1	0