Miles F Wilkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5466382/publications.pdf

Version: 2024-02-01

106 papers 8,092 citations

46918 47 h-index 51492 86 g-index

241 all docs

241 docs citations

times ranked

241

9623 citing authors

#	Article	IF	CITATIONS
1	Concordant Androgen-Regulated Expression of Divergent <i>Rhox5</i> Promoters in Sertoli Cells. Endocrinology, 2022, 163, .	1.4	2
2	Nonsense-mediated RNA decay: an emerging modulator of malignancy. Nature Reviews Cancer, 2022, 22, 437-451.	12.8	47
3	The <i>Rhox</i> gene cluster suppresses germline <i>LINE1</i> transposition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	7
4	RHOX10 drives mouse spermatogonial stem cell establishment through a transcription factor signaling cascade. Cell Reports, 2021, 36, 109423.	2.9	12
5	A single-cell view of spermatogonial stem cells. Current Opinion in Cell Biology, 2020, 67, 71-78.	2.6	39
6	Transcriptome profiling reveals signaling conditions dictating human spermatogonia fate in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17832-17841.	3.3	46
7	A synonymous <i>UPF3B</i> variant causing a speech disorder implicates NMD as a regulator of neurodevelopmental disorder gene networks. Human Molecular Genetics, 2020, 29, 2568-2578.	1.4	9
8	Single-cell RNAseq analysis of testicular germ and somatic cell development during the perinatal period. Development (Cambridge), 2020, 147, .	1.2	61
9	The role of the NMD factor UPF3B in olfactory sensory neurons. ELife, 2020, 9, .	2.8	18
10	Response to: Xâ€linked miRâ€506 family miRNAs promote FMRP expression in mouse spermatogonia. EMBO Reports, 2020, 21, e49354.	2.0	1
11	Inflammatory Stimuli Trigger Increased Androgen Production and Shifts in Gene Expression in Theca-Interstitial Cells. Endocrinology, 2019, 160, 2946-2958.	1.4	38
12	Genetic paradox explained by nonsense. Nature, 2019, 568, 179-180.	13.7	35
13	Nonsense shielding: protecting <scp>RNA</scp> from decay leads to cancer. EMBO Journal, 2019, 38, .	3.5	1
14	The Neonatal and Adult Human Testis Defined at the Single-Cell Level. Cell Reports, 2019, 26, 1501-1517.e4.	2.9	224
15	Human Spermatogonial Stem Cells Scrutinized under the Single-Cell Magnifying Glass. Cell Stem Cell, 2019, 24, 201-203.	5. 2	26
16	A micro <scp>RNA</scp> cluster in the Fragileâ€X region expressed during spermatogenesis targets <scp>FMR</scp> 1. EMBO Reports, 2019, 20, .	2.0	25
17	Chromatin Modification and Global Transcriptional Silencing in the Oocyte Mediated by the mRNA Decay Activator ZFP36L2. Developmental Cell, 2018, 44, 392-402.e7.	3.1	65
18	RNA Decay Factor UPF1 Promotes Protein Decay: A Hidden Talent. BioEssays, 2018, 40, 1700170.	1.2	11

#	Article	IF	CITATIONS
19	Nonsense-mediated RNA decay in the brain: emerging modulator of neural development and disease. Nature Reviews Neuroscience, 2018, 19, 715-728.	4.9	107
20	Stress and the nonsense-mediated RNA decay pathway. Cellular and Molecular Life Sciences, 2017, 74, 3509-3531.	2.4	74
21	RNA decay, evolution, and the testis. RNA Biology, 2017, 14, 146-155.	1.5	10
22	An RNA decay factor wears a new coat: UPF3B modulates translation termination. F1000Research, 2017, 6, 2159.	0.8	9
23	The Antagonistic Gene Paralogs Upf3a and Upf3b Govern Nonsense-Mediated RNA Decay. Cell, 2016, 165, 382-395.	13.5	132
24	The Homeobox Transcription Factor RHOX10 Drives Mouse Spermatogonial Stem Cell Establishment. Cell Reports, 2016, 17, 149-164.	2.9	50
25	The human <i>RHOX</i> gene cluster: target genes and functional analysis of gene variants in infertile men. Human Molecular Genetics, 2016, 25, ddw313.	1.4	25
26	Nonsense-Mediated RNA Decay Influences Human Embryonic Stem Cell Fate. Stem Cell Reports, 2016, 6, 844-857.	2.3	68
27	The nonsense-mediated RNA decay pathway is disrupted in inflammatory myofibroblastic tumors. Journal of Clinical Investigation, 2016, 126, 3058-3062.	3.9	45
28	Identification of novel post-transcriptional features in olfactory receptor family mRNAs. Nucleic Acids Research, 2015, 43, 9314-9326.	6.5	32
29	MicroRNAs and Sertoli cells. , 2015, , 307-332.		3
30	«scp»RNA«/scp» degradation drives stem cellÂdifferentiation. EMBO Journal, 2015, 34, 1606-1608.	3.5	23
31	Splicing does the two-step. Nature, 2015, 521, 301-301.	13.7	11
32	The unfolded protein response is shaped by the <scp>NMD</scp> pathway. EMBO Reports, 2015, 16, 599-609.	2.0	98
33	Evidence that DNA methylation engenders dynamic gene regulation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2116.	3.3	16
34	shRNA Off-Target Effects In Vivo: Impaired Endogenous siRNA Expression and Spermatogenic Defects. PLoS ONE, 2015, 10, e0118549.	1.1	11
35	Hormone-induced and DNA Demethylation-induced Relief of a Tissue-specific and Developmentally Regulated Block in Transcriptional Elongation. Journal of Biological Chemistry, 2014, 289, 35087-35101.	1.6	3
36	Transcriptional control of spermatogonial maintenance and differentiation. Seminars in Cell and Developmental Biology, 2014, 30, 14-26.	2.3	117

#	Article	IF	CITATIONS
37	Epigenetic regulation of the RHOX homeobox gene cluster and its association with human male infertility. Human Molecular Genetics, 2014, 23, 12-23.	1.4	45
38	Nonsense-mediated mRNA decay: Inter-individual variability and human disease. Neuroscience and Biobehavioral Reviews, 2014, 46, 175-186.	2.9	130
39	Research Resource: Genome-Wide Identification of AR-Regulated Genes Translated in Sertoli Cells In Vivo Using the RiboTag Approach. Molecular Endocrinology, 2014, 28, 575-591.	3.7	51
40	The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. Nature Medicine, 2014, 20, 596-598.	15.2	111
41	Posttranscriptional Control of the Stem Cell and Neurogenic Programs by the Nonsense-Mediated RNA Decay Pathway. Cell Reports, 2014, 6, 748-764.	2.9	129
42	Suppressing nonsense—a surprising function for 5â€azacytidine. EMBO Molecular Medicine, 2014, 6, 1518-1520.	3.3	4
43	Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nature Biotechnology, 2013, 31, 1137-1142.	9.4	433
44	Regulation of nonsense-mediated mRNA decay: Implications for physiology and disease. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 624-633.	0.9	103
45	The RHOX Homeodomain Proteins Regulate the Expression of Insulin and Other Metabolic Regulators in the Testis. Journal of Biological Chemistry, 2013, 288, 34809-34825.	1.6	19
46	Dynamic expression pattern and subcellular localization of the Rhox10 homeobox transcription factor during early germ cell development. Reproduction, 2012, 143, 611-624.	1.1	18
47	In vitro spermatogenesis. Spermatogenesis, 2012, 2, 238-244.	0.8	35
48	DNA Demethylation-Dependent AR Recruitment and GATA Factors Drive Rhox5 Homeobox Gene Transcription in the Epididymis. Molecular Endocrinology, 2012, 26, 538-549.	3.7	18
49	A conserved microRNA/NMD regulatory circuit controls gene expression. RNA Biology, 2012, 9, 22-26.	1.5	33
50	Regulation of nonsenseâ€mediated mRNA decay. Wiley Interdisciplinary Reviews RNA, 2012, 3, 807-828.	3.2	101
51	Rapidly Evolving MicroRNAs Retain Their Targets by a Coâ€Evolution Mechanism. FASEB Journal, 2012, 26, 952.4.	0.2	0
52	Convergence of the MicroRNA and NMD Pathways in Neurons. FASEB Journal, 2012, 26, 733.2.	0.2	0
53	NMDâ€deficient Upf3bâ€null mice display behavioral and neuropathological defects. FASEB Journal, 2012, 26, 747.5.	0.2	1
54	Identification of a MicroRNA that Activates Gene Expression by Repressing Nonsense-Mediated RNA Decay. Molecular Cell, 2011, 42, 500-510.	4.5	267

#	Article	IF	CITATIONS
55	RNA Homeostasis Governed by Cell Type-Specific and Branched Feedback Loops Acting on NMD. Molecular Cell, 2011, 43, 950-961.	4.5	187
56	Expression of Tubb3, a Beta-Tubulin Isotype, Is Regulated by Androgens in Mouse and Rat Sertoli Cells1. Biology of Reproduction, 2011, 85, 934-945.	1.2	47
57	The <i>Rhox</i> Homeobox Gene Cluster Is Imprinted and Selectively Targeted for Regulation by Histone H1 and DNA Methylation. Molecular and Cellular Biology, 2011, 31, 1275-1287.	1.1	38
58	Frame-disrupting mutations elicit pre-mRNA accumulation independently of frame disruption. Nucleic Acids Research, 2010, 38, 1559-1574.	6.5	8
59	Transcription and post-transcriptional regulation of spermatogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1637-1651.	1.8	128
60	The Rhox genes. Reproduction, 2010, 140, 195-213.	1.1	61
61	Androgen-Induced Rhox Homeobox Genes Modulate the Expression of AR-Regulated Genes. Molecular Endocrinology, 2010, 24, 60-75.	3.7	46
62	Nonsense Codons Trigger an RNA Partitioning Shift. Journal of Biological Chemistry, 2009, 284, 4062-4072.	1.6	20
63	A UPF3-mediated regulatory switch that maintains RNA surveillance. Nature Structural and Molecular Biology, 2009, 16, 747-753.	3.6	106
64	The RHOX5 Homeodomain Protein Mediates Transcriptional Repression of the Netrin-1 Receptor Gene Unc5c. Journal of Biological Chemistry, 2008, 283, 3866-3876.	1.6	28
65	GATA Factors and Androgen Receptor Collaborate To Transcriptionally Activate the <i>Rhox5</i> Homeobox Gene in Sertoli Cells. Molecular and Cellular Biology, 2008, 28, 2138-2153.	1.1	58
66	The Nonsense-Mediated Decay RNA Surveillance Pathway. Annual Review of Biochemistry, 2007, 76, 51-74.	5.0	1,113
67	An alternative branch of the nonsense-mediated decay pathway. EMBO Journal, 2007, 26, 1820-1830.	3.5	185
68	Regulation and Function of the Rhox5 Homeobox Gene. Annals of the New York Academy of Sciences, 2007, 1120, 72-83.	1.8	23
69	Interaction between mRNA export, mRNA decay and translation in the yeast Saccharomyces cerevisiae. FASEB Journal, 2007, 21, A654.	0.2	О
70	Role for Upf2p Phosphorylation in Saccharomyces cerevisiae Nonsense-Mediated mRNA Decay. Molecular and Cellular Biology, 2006, 26, 3390-3400.	1.1	48
71	Tissue-specific RNAi reveals that WT1 expression in nurse cells controls germ cell survival and spermatogenesis. Genes and Development, 2006, 20, 147-152.	2.7	103
72	RNA splicing promotes translation and RNA surveillance. Nature Structural and Molecular Biology, 2005, 12, 801-809.	3.6	80

#	Article	IF	Citations
73	A new function for nonsense-mediated mRNA-decay factors. Trends in Genetics, 2005, 21, 143-148.	2.9	78
74	Regulation of the Rhox5 Homeobox Gene in Primary Granulosa Cells: Preovulatory Expression and Dependence on SP1/SP3 and GABP1. Biology of Reproduction, 2005, 73, 1126-1134.	1.2	20
75	Gene Regulation in Spermatogenesis. Current Topics in Developmental Biology, 2005, 71, 131-197.	1.0	92
76	Rhox: A New Homeobox Gene Cluster. Cell, 2005, 120, 369-382.	13.5	220
77	Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nature Genetics, 2004, 36, 361-369.	9.4	383
78	The Cycle of Nonsense. Molecular Cell, 2003, 12, 1059-1061.	4.5	17
79	PemHomeobox Gene Promoter Sequences that Direct Transcription in a Sertoli Cell-Specific, Stage-Specific, and Androgen-Dependent Manner in the Testisin Vivo. Molecular Endocrinology, 2003, 17, 223-233.	3.7	80
80	A Highly Active Homeobox Gene Promoter Regulated by Ets and Sp1 Family Members in Normal Granulosa Cells and Diverse Tumor Cell Types. Journal of Biological Chemistry, 2002, 277, 26036-26045.	1.6	29
81	A Quality Control Pathway That Down-regulates Aberrant T-cell Receptor (TCR) Transcripts by a Mechanism Requiring UPF2 and Translation. Journal of Biological Chemistry, 2002, 277, 18489-18493.	1.6	62
82	Pem Homeobox Gene Regulatory Sequences That Direct Androgen-dependent Developmentally Regulated Gene Expression in Different Subregions of the Epididymis. Journal of Biological Chemistry, 2002, 277, 48771-48778.	1.6	25
83	Nonsense-Associated Altered Splicing. Molecular Cell, 2002, 10, 951-957.	4.5	102
84	Two novel human X-linked homeobox genes, hPEPP1 and hPEPP2, selectively expressed in the testis. Gene, 2002, 301, 1-11.	1.0	47
85	RNA surveillance by nuclear scanning?. Nature Cell Biology, 2002, 4, E144-E147.	4.6	97
86	T-cell receptor sequences that elicit strong down-regulation of premature termination codon-bearing transcripts. EMBO Journal, 2002, 21, 125-134.	3.5	64
87	Precursor RNAs Harboring Nonsense Codons Accumulate Near the Site of Transcription. Molecular Cell, 2001, 8, 33-43.	4.5	115
88	An active immunization approach to generate protective catalytic antibodies. Biochemical Journal, 2001, 360, 151-157.	1.7	6
89	Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm. BioEssays, 2001, 23, 775-787.	1.2	103
90	Localization and Stability of Introns Spliced from the Pem Homeobox Gene. Journal of Biological Chemistry, 2001, 276, 16919-16930.	1.6	39

#	Article	IF	CITATIONS
91	Rapid induction of nuclear transcripts and inhibition of intron decay in response to the polymerase II inhibitor DRB. Journal of Molecular Biology, 2000, 299, 1179-1191.	2.0	26
92	The stability and fate of a spliced intron from vertebrate cells. Rna, 1999, 5, 206-220.	1.6	77
93	Nonsense Surveillance in Lymphocytes?. Immunity, 1998, 8, 135-141.	6.6	182
94	T Cell Receptor (TCR) Mini-Gene mRNA Expression Regulated by Nonsense Codons: A Nuclear-associated Translation-like Mechanism. Journal of Experimental Medicine, 1997, 185, 985-992.	4.2	71
95	Site-Directed Mutagenesis: A Two-Step Method Using PCR and <i>Dpn</i> I. BioTechniques, 1997, 23, 588-590.	0.8	92
96	Rapid Evolution of a Homeodomain: Evidence for Positive Selection. Journal of Molecular Evolution, 1997, 45, 579-588.	0.8	85
97	Pem:A Testosterone- and LH-Regulated Homeobox Gene Expressed in Mouse Sertoli Cells and Epididymis. Developmental Biology, 1996, 179, 471-484.	0.9	125
98	Homeobox genes and male reproductive development. Journal of Assisted Reproduction and Genetics, 1996, 13, 182-192.	1.2	37
99	An Androgen-Regulated Homeobox Gene Expressed in Rat Testis and Epididymis 1. Biology of Reproduction, 1996, 55, 975-983.	1.2	53
100	The Homeobox Gene. Journal of Biological Chemistry, 1996, 271, 17536-17546.	1.6	77
101	A Regulatory Mechanism That Detects Premature Nonsense Codons in T-cell Receptor Transcripts in Vivo Is Reversed by Protein Synthesis Inhibitors in Vitro. Journal of Biological Chemistry, 1995, 270, 28995-29003.	1.6	277
102	The oncofetal gene Pem encodes a homeodomain and is regulated in primordial and pre-muscle stem cells. Mechanisms of Development, 1991, 34, 155-164.	1.7	39
103	A novel oncofetal gene is expressed in a stage-specific manner in murine embryonic development. Developmental Biology, 1990, 141, 451-455.	0.9	66
104	The CD3Î′ gene encodes multiple transcripts regulated by transcriptional and post-transcriptional mechanisms. European Journal of Immunology, 1989, 19, 2355-2360.	1.6	13
105	Irradiation Selectively Inhibits Expression from the Androgen-Dependent Pem Homeobox Gene Promoter in Sertoli Cells. , 0, .		12
106	Regulation of both transcription and RNA turnover contribute to germline specification. Nucleic Acids Research, 0 , , .	6.5	1