List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5466269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroprotection against Aminochrome Neurotoxicity: Glutathione Transferase M2-2 and DT-Diaphorase. Antioxidants, 2022, 11, 296.	5.1	11
2	Astrocytes protect dopaminergic neurons against aminochrome neurotoxicity. Neural Regeneration Research, 2022, 17, 1861.	3.0	23
3	Structural and functional analysis of the inhibition of equine glutathione transferase A3-3 by organotin endocrine disrupting pollutants. Environmental Pollution, 2021, 268, 115960.	7.5	4
4	Cellular Trafficking of Glutathione Transferase M2-2 Between U373MG and SHSY-S7 Cells is Mediated by Exosomes. Neurotoxicity Research, 2021, 39, 182-190.	2.7	12
5	Characterization of Dog Glutathione Transferase P1-1, an Enzyme Relevant to Veterinary Medicine. International Journal of Molecular Sciences, 2021, 22, 4079.	4.1	3
6	Marmoset glutathione transferases with ketosteroid isomerase activity. Biochemistry and Biophysics Reports, 2021, 27, 101078.	1.3	3
7	Role of human glutathione transferases in biotransformation of the nitric oxide prodrug JS-K. Scientific Reports, 2021, 11, 20765.	3.3	5
8	Glutathione Transferases as Efficient Ketosteroid Isomerases. Frontiers in Molecular Biosciences, 2021, 8, 765970.	3.5	12
9	Structure and steroid isomerase activity of <i>Drosophila</i> glutathione transferase E14 essential for ecdysteroid biosynthesis. FEBS Letters, 2020, 594, 1187-1195.	2.8	13
10	Interactions Between Odorants and Glutathione Transferases in the Human Olfactory Cleft. Chemical Senses, 2020, 45, 645-654.	2.0	26
11	Mutational Analysis of the Binding of Alternative Substrates and Inhibitors to the Active Site of Human Clutathione Transferase P1–1. Processes, 2020, 8, 1232.	2.8	1
12	Potent inhibitors of equine steroid isomerase EcaGST A3-3. PLoS ONE, 2019, 14, e0214160.	2.5	5
13	Novel Alpha-Synuclein Oligomers Formed with the Aminochrome-Glutathione Conjugate Are Not Neurotoxic. Neurotoxicity Research, 2019, 35, 432-440.	2.7	15
14	Design and synthesis of 2-substituted-5-(4-trifluoromethylphenyl-sulphonamido)benzoxazole derivatives as human GST P1-1 inhibitors. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 510-517.	2.8	8
15	Characterization of equine GST A3-3 as a steroid isomerase. Journal of Steroid Biochemistry and Molecular Biology, 2018, 178, 117-126.	2.5	16
16	Expression of a Drosophila glutathione transferase in Arabidopsis confers the ability to detoxify the environmental pollutant, and explosive, 2,4,6â€ŧrinitrotoluene. New Phytologist, 2017, 214, 294-303.	7.3	21
17	Exploring sequence-function space of a poplar glutathione transferase using designed information-rich gene variants. Protein Engineering, Design and Selection, 2017, 30, 543-549.	2.1	15
18	Drosophila GSTs display outstanding catalytic efficiencies with the environmental pollutants 2,4,6-trinitrotoluene and 2,4-dinitrotoluene. Biochemistry and Biophysics Reports, 2016, 5, 141-145.	1.3	7

BENGT MANNERVIK

#	Article	IF	CITATIONS
19	Evolution of Negative Cooperativity in Glutathione Transferase Enabled Preservation of Enzyme Function. Journal of Biological Chemistry, 2016, 291, 26739-26749.	3.4	24
20	Comparison of epsilon- and delta-class glutathione <i>S</i> -transferases: the crystal structures of the glutathione <i>S</i> -transferases DmGSTE6 and DmGSTE7 from <i>Drosophila melanogaster</i> . Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2089-2098.	2.5	9
21	On the biosynthesis of 15-HETE and eoxin C4 by human airway epithelial cells. Prostaglandins and Other Lipid Mediators, 2015, 121, 83-90.	1.9	23
22	Evolution of the active site of human glutathione transferase A2-2 for enhanced activity with dietary isothiocyanates. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 742-749.	2.4	8
23	Identification of new inhibitors for human hematopoietic prostaglandin D2 synthase among FDA-approved drugs and other compounds. Chemico-Biological Interactions, 2015, 229, 91-99.	4.0	15
24	Mapping of Amino Acid Substitutions Conferring Herbicide Resistance in Wheat Glutathione Transferase. ACS Synthetic Biology, 2015, 4, 221-227.	3.8	32
25	Glutathione Transferase-M2-2 Secreted from Glioblastoma Cell Protects SH-SY5Y Cells from Aminochrome Neurotoxicity. Neurotoxicity Research, 2015, 27, 217-228.	2.7	44
26	Substrate specificities of two tau class glutathione transferases inducible by 2,4,6-trinitrotoluene in poplar. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1877-1883.	2.4	10
27	Overexpression of Glutathione Transferase E7 in Drosophila Differentially Impacts Toxicity of Organic Isothiocyanates in Males and Females. PLoS ONE, 2014, 9, e110103.	2.5	10
28	Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy, 2014, 10, 618-630.	9.1	59
29	Isomerization of Δ ⁵ -Androstene-3,17-dione into Δ ⁴ -Androstene-3,17-dione Catalyzed by Human Glutathione Transferase A3-3: A Computational Study Identifies a Dual Role for Glutathione. Journal of Physical Chemistry A, 2014, 118, 5790-5800.	2.5	14
30	Glutathione Transferases in the Bioactivation of Azathioprine. Advances in Cancer Research, 2014, 122, 199-244.	5.0	21
31	Glutathione transferases immobilized on nanoporous alumina: Flow system kinetics, screening, and stability. Analytical Biochemistry, 2014, 446, 59-63.	2.4	12
32	An improved dual-tube megaprimer approach for multi-site saturation mutagenesis. World Journal of Microbiology and Biotechnology, 2013, 29, 667-672.	3.6	3
33	Fluorogenic probes using 4-substituted-2-nitrobenzenesulfonyl derivatives as caging groups for the analysis of human glutathione transferase catalyzed reactions. Analyst, The, 2013, 138, 7326.	3.5	17
34	Hidden Allostery in Human Glutathione Transferase P1-1 Unveiled by Unnatural Amino Acid Substitutions and Inhibition Studies. Journal of Molecular Biology, 2013, 425, 1509-1514.	4.2	17
35	FDA-approved drugs and other compounds tested as inhibitors of human glutathione transferase P1-1. Chemico-Biological Interactions, 2013, 205, 53-62.	4.0	39

 $_{36}$ Mechanism of Glutathione Transferase P1-1-Catalyzed Activation of the Prodrug Canfosfamide (TLK286,) Tj ETQq0 $_{2.5}^{0.0}$ rgBT $_{2.9}^{0.0}$ rgBT $_{2.9}^{0.0}$ rgBT $_{2.5}^{0.0}$ rgBT $_{2.5}$

#	Article	IF	CITATIONS
37	Evolution of Broad Spectrum β-Lactam Resistance in an Engineered Metallo-β-lactamase. Journal of Biological Chemistry, 2013, 288, 2314-2324.	3.4	15
38	Enzymatic Detoxication, Conformational Selection, and the Role of Molten Globule Active Sites. Journal of Biological Chemistry, 2013, 288, 18599-18611.	3.4	41
39	Five Decades with Glutathione and the GSTome. Journal of Biological Chemistry, 2012, 287, 6072-6083.	3.4	44
40	Inhibition of human glutathione transferase P1-1 by novel benzazole Derivatives. Turkish Journal of Biochemistry, 2012, 37, 431-436.	0.5	7
41	Universal Caging Group for the inâ€Cell Detection of Glutathione Transferase Applied to ¹⁹ F NMR and Bioluminogenic Probes. ChemBioChem, 2012, 13, 1428-1432.	2.6	17
42	Structure-Based Redesign of GST A2-2 for Enhanced Catalytic Efficiency with Azathioprine. Chemistry and Biology, 2012, 19, 414-421.	6.0	17
43	Synthesis and Characterization of a Series of Highly Fluorogenic Substrates for Glutathione Transferases, a General Strategy. Journal of the American Chemical Society, 2011, 133, 14109-14119.	13.7	112
44	Characterization of porcine Alpha-class glutathione transferase A1-1. Archives of Biochemistry and Biophysics, 2011, 507, 205-211.	3.0	7
45	Functional studies of single-nucleotide polymorphic variants of human glutathione transferase T1-1 involving residues in the dimer interface. Archives of Biochemistry and Biophysics, 2011, 513, 87-93.	3.0	2
46	Engineering GST M2-2 for High Activity with Indene 1,2-Oxide and Indication of an H-Site Residue Sustaining Catalytic Promiscuity. Journal of Molecular Biology, 2011, 412, 111-120.	4.2	18
47	Biosynthesis of 14,15â€Hepoxilins in Human L1236 Hodgkin Lymphoma Cells and Eosinophils. Lipids, 2011, 46, 69-79.	1.7	12
48	Quantitative and selective polymerase chain reaction analysis of highly similar human alpha-class glutathione transferases. Analytical Biochemistry, 2011, 412, 96-101.	2.4	8
49	Experimental conditions affecting functional comparison of highly active glutathione transferases. Analytical Biochemistry, 2011, 413, 16-23.	2.4	3
50	Cys-X Scanning for Expansion of Active-site Residues and Modulation of Catalytic Functions in a Glutathione Transferase. Journal of Biological Chemistry, 2011, 286, 16871-16878.	3.4	8
51	Porcine glutathione transferase Alpha 2-2 is a human GST A3-3 analogue that catalyses steroid double-bond isomerization. Biochemical Journal, 2010, 431, 159-167.	3.7	18
52	Differences among allelic variants of human glutathione transferase A2-2 in the activation of azathioprine. Chemico-Biological Interactions, 2010, 186, 110-117.	4.0	25
53	The quest for molecular quasiâ€species in ligandâ€activity space and its application to directed enzyme evolution. FEBS Letters, 2010, 584, 2565-2571.	2.8	9
54	Minor Modifications of the C-terminal Helix Reschedule the Favored Chemical Reactions Catalyzed by Theta Class Glutathione Transferase T1-1. Journal of Biological Chemistry, 2010, 285, 5639-5645.	3.4	11

#	Article	IF	CITATIONS
55	Glutathione Transferase A1-1: Catalytic Importance of Arginine 15. Journal of Physical Chemistry B, 2010, 114, 1690-1697.	2.6	19
56	Structural Basis for Featuring of Steroid Isomerase Activity in Alpha Class Glutathione Transferases. Journal of Molecular Biology, 2010, 397, 332-340.	4.2	38
57	A Novel Quasi-Species of Glutathione Transferase with High Activity towards Naturally Occurring Isothiocyanates Evolves from Promiscuous Low-Activity Variants. Journal of Molecular Biology, 2010, 401, 451-464.	4.2	22
58	Molecular evolution of Theta-class glutathione transferase for enhanced activity with the anticancer drug 1,3-bis-(2-chloroethyl)-1-nitrosourea and other alkylating agents. Archives of Biochemistry and Biophysics, 2010, 497, 28-34.	3.0	10
59	Single-nucleotide polymorphic variants of human glutathione transferase T1-1 differ in stability and functional properties. Archives of Biochemistry and Biophysics, 2009, 490, 24-29.	3.0	12
60	Multi-substrate–activity space and quasi-species in enzyme evolution: Ohno's dilemma, promiscuity and functional orthogonality. Biochemical Society Transactions, 2009, 37, 740-744.	3.4	16
61	Glutathione Transferase: New Model for Glutathione Activation. Chemistry - A European Journal, 2008, 14, 9591-9598.	3.3	59
62	Glutathione transferase activity with a novel substrate mimics the activation of the prodrug azathioprine. Analytical Biochemistry, 2008, 375, 339-344.	2.4	16
63	Structural Determinants of Glutathione Transferases with Azathioprine Activity Identified by DNA Shuffling of Alpha Class Members. Journal of Molecular Biology, 2008, 375, 1365-1379.	4.2	28
64	Modulating Catalytic Activity by Unnatural Amino Acid Residues in a GSH-Binding Loop of GST P1-1. Journal of Molecular Biology, 2008, 376, 811-826.	4.2	15
65	Emergence of Novel Enzyme Quasi-Species Depends on the Substrate Matrix. Journal of Molecular Biology, 2008, 382, 136-153.	4.2	13
66	Emergence of a novel highly specific and catalytically efficient enzyme from a naturally promiscuous glutathione transferase. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 1458-1463.	2.4	16
67	MOLECULAR ENZYMOLOGY OF THE GLYOXALASE SYSTEM. Drug Metabolism and Drug Interactions, 2008, 23, 13-28.	0.3	62
68	Targeting human glutathione transferase A3-3 attenuates progesterone production in human steroidogenic cells. Biochemical Journal, 2008, 414, 103-109.	3.7	25
69	Colorimetric endpoint assay for enzyme-catalyzed iodide ion release for high-throughput screening in microtiter plates. Archives of Biochemistry and Biophysics, 2007, 464, 284-287.	3.0	12
70	Human glutathione transferases catalyzing the bioactivation of anticancer thiopurine prodrugs. Biochemical Pharmacology, 2007, 73, 1829-1841.	4.4	19
71	Design and Evolution of New Catalytic Activity with an Existing Protein Scaffold. Science, 2006, 311, 535-538.	12.6	240
72	Structural Basis of the Suppressed Catalytic Activity of Wild-type Human Glutathione Transferase T1-1 Compared to its W234R Mutant. Journal of Molecular Biology, 2006, 355, 96-105.	4.2	36

5

#	Article	IF	CITATIONS
73	New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 197-207.	2.5	55
74	Replacement Surgery with Unnatural Amino Acids in the Lock-and-Key Joint of Glutathione Transferase Subunits. Chemistry and Biology, 2006, 13, 929-936.	6.0	13
75	Screening and characterization of variant Theta-class glutathione transferases catalyzing the activation of ethylene dibromide to a mutagen. Environmental and Molecular Mutagenesis, 2006, 47, 657-665.	2.2	10
76	The Isoenzymes of Glutathione Transferase. Advances in Enzymology and Related Areas of Molecular Biology, 2006, 57, 357-417.	1.3	482
77	Divergent Activities of Human Glutathione Transferases in the Bioactivation of Azathioprine. Molecular Pharmacology, 2006, 70, 747-754.	2.3	114
78	Alternative mutations of a positively selected residue elicit gain or loss of functionalities in enzyme evolution. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4876-4881.	7.1	29
79	Functionally diverging molecular quasi-species evolve by crossing two enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10866-10870.	7.1	24
80	Identification of functionally diverging quasiâ€species in molecular enzyme evolution. FASEB Journal, 2006, 20, A470.	0.5	0
81	A Positively Selected Residue Influences Enzyme Functionalities. FASEB Journal, 2006, 20, A474.	0.5	Ο
82	Regio- and enantioselectivities in epoxide conjugations are modulated by residue 210 in Mu class glutathione transferases. Protein Engineering, Design and Selection, 2005, 18, 607-616.	2.1	7
83	Peptide Phage Display for Probing GST–Protein Interactions. Methods in Enzymology, 2005, 401, 354-367.	1.0	Ο
84	Human Glutathione Transferase A3â€3 Active as Steroid Doubleâ€Bond Isomerase. Methods in Enzymology, 2005, 401, 265-278.	1.0	13
85	Nomenclature for Mammalian Soluble Glutathione Transferases. Methods in Enzymology, 2005, 401, 1-8.	1.0	263
86	Optimizing the Heterologous Expression of Glutathione Transferase. Methods in Enzymology, 2005, 401, 254-265.	1.0	1
87	Directed enzyme evolution guided by multidimensional analysis of substrate-activity space. Protein Engineering, Design and Selection, 2004, 17, 49-55.	2.1	26
88	Functional Role of the Lock and Key Motif at the Subunit Interface of Glutathione Transferase P1-1. Journal of Biological Chemistry, 2004, 279, 9586-9596.	3.4	59
89	Selective expression of detoxifying glutathione transferases in mouse colon: effect of experimental colitis and the presence of bacteria. Histochemistry and Cell Biology, 2004, 122, 151-9.	1.7	15
90	Purification, crystallization and preliminary X-ray data of the transcription factor NtcA from the cyanobacteriumAnabaenaPCC 7120. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 923-925.	2.5	1

#	Article	IF	CITATIONS
91	Incorporation of a single His residue by rational design enables thiol-ester hydrolysis by human glutathione transferase A1-1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13163-13167.	7.1	29
92	Mechanism of the Glutathione Transferase-Catalyzed Conversion of Antitumor 2-Crotonyloxymethyl-2-cycloalkenones to GSH Adducts. Journal of the American Chemical Society, 2003, 125, 15049-15058.	13.7	49
93	Contribution of Glycine 146 to a Conserved Folding Module Affecting Stability and Refolding of Human Glutathione Transferase P1-1. Journal of Biological Chemistry, 2003, 278, 1291-1302.	3.4	21
94	Identification of Residues in Glutathione Transferase Capable of Driving Functional Diversification in Evolution. Journal of Biological Chemistry, 2003, 278, 8733-8738.	3.4	110
95	Novel polymorphisms in the glutathione transferase superfamily. Pharmacogenetics and Genomics, 2003, 13, 127-128.	5.7	2
96	Measurement of Glutathione Transferases. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2002, 14, Unit6.4.	1.1	8
97	Transmutation of Human Glutathione Transferase A2-2 with Peroxidase Activity into an Efficient Steroid Isomerase. Journal of Biological Chemistry, 2002, 277, 30019-30022.	3.4	53
98	Inactivation of Carcinogenic Diol Epoxides of Dibenzo[a,l]pyrene (Dibenzo[def,p]chrysene) by Human Alpha Class Glutathione Transferases. Polycyclic Aromatic Compounds, 2002, 22, 823-829.	2.6	0
99	The Cyclopentenone Product of Lipid Peroxidation, 15-A2t-Isoprostane (8-Isoprostaglandin A2), Is Efficiently Conjugated with Glutathione by Human and Rat Glutathione Transferase A4-4. Chemical Research in Toxicology, 2002, 15, 1114-1118.	3.3	40
100	Hybridization of alpha class subunits generating a functional glutathione transferase A1-4 heterodimer. Journal of Molecular Biology, 2002, 316, 395-406.	4.2	8
101	Catalytic Activities of Human Alpha Class Glutathione Transferases toward Carcinogenic Dibenzo[a,l]pyrene Diol Epoxidesâ€. Chemical Research in Toxicology, 2002, 15, 825-831.	3.3	29
102	An Ensemble of Theta Class Glutathione Transferases with Novel Catalytic Properties Generated by Stochastic Recombination of Fragments of Two Mammalian Enzymes. Journal of Molecular Biology, 2002, 318, 59-70.	4.2	36
103	Active-site Residues Governing High Steroid Isomerase Activity in Human Glutathione Transferase A3-3. Journal of Biological Chemistry, 2002, 277, 16648-16654.	3.4	46
104	The polymorphic human glutathione transferase T1-1, the most efficient glutathione transferase in the denitrosation and inactivation of the anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea. Biochemical Pharmacology, 2002, 63, 191-197.	4.4	40
105	Probing Biomolecular Interactions of Glutathione Transferase M2-2 by using Peptide Phage Display. ChemBioChem, 2002, 3, 823-828.	2.6	4
106	High-Resolution Capillary Zone and Gel Electrophoresis of Structurally Similar Amphipathic Glutathione Conjugates Based on Interaction with -Cyclodextrins. ChemBioChem, 2002, 3, 1117-1125.	2.6	7
107	Inhibition of glutathione S-transferases by antimalarial drugs possible implications for circumventing anticancer drug resistance. International Journal of Cancer, 2002, 97, 700-705.	5.1	64
108	A Semisynthetic Glutathione Peroxidase with High Catalytic Efficiency. Chemistry and Biology, 2002, 9, 789-794.	6.0	56

#	Article	IF	CITATIONS
109	Screening for recombinant glutathione transferases active with monochlorobimane. Analytical Biochemistry, 2002, 309, 102-108.	2.4	23
110	Synthesis and characterization of 6-chloroacetyl-2-dimethylaminonaphthalene as a fluorogenic substrate and a mechanistic probe for glutathione transferases. Analytical Biochemistry, 2002, 311, 171-178.	2.4	32
111	A Highly Acidic Tyrosine 9 and a Normally Titrating Tyrosine 212 Contribute to the Catalytic Mechanism of Human Glutathione Transferase A4-4. Biochemical and Biophysical Research Communications, 2001, 280, 878-882.	2.1	18
112	Disorder-to-Order Transition of the Active Site of Human Class Pi Glutathione Transferase, GST P1-1â€. Biochemistry, 2001, 40, 11660-11669.	2.5	30
113	Proposed reductive metabolism of artemisinin by glutathione transferasesin vitro. Free Radical Research, 2001, 35, 427-434.	3.3	21
114	Yeast Glyoxalase I Is a Monomeric Enzyme with Two Active Sites. Journal of Biological Chemistry, 2001, 276, 1845-1849.	3.4	49
115	Human Glutathione Transferase A1-1 Demonstrates Both Half-of-the-sites and All-of-the-sites Reactivity. Journal of Biological Chemistry, 2001, 276, 35599-35605.	3.4	17
116	Human Glutathione Transferase A3-3, a Highly Efficient Catalyst of Double-bond Isomerization in the Biosynthetic Pathway of Steroid Hormones. Journal of Biological Chemistry, 2001, 276, 33061-33065.	3.4	168
117	The Folding and Stability of Human Alpha Class Glutathione Transferase A1-1 Depend on Distinct Roles of a Conserved N-capping Box and Hydrophobic Staple Motif. Journal of Biological Chemistry, 2001, 276, 32177-32183.	3.4	43
118	The Role of Glutathione in the Isomerization of Δ5-Androstene- 3,17-dione Catalyzed by Human Glutathione Transferase A1-1. Journal of Biological Chemistry, 2001, 276, 11698-11704.	3.4	47
119	[23] Use of phage display and transition-state analogs to select enzyme variants with altered catalytic properties: Clutathione transferase as an example. Methods in Enzymology, 2000, 328, 389-404.	1.0	8
120	[28] Use of chimeras generated by DNA shuffling: Probing structure-function relationships among glutathione transferases. Methods in Enzymology, 2000, 328, 463-477.	1.0	8
121	Kinetic properties of missense mutations in patients with glutathione synthetase deficiency. Biochemical Journal, 2000, 349, 275-279.	3.7	25
122	A Conserved "Hydrophobic Staple Motif―Plays a Crucial Role in the Refolding of Human Glutathione Transferase P1-1. Journal of Biological Chemistry, 2000, 275, 10421-10428.	3.4	36
123	Active Site Serine Promotes Stabilization of the Reactive Glutathione Thiolate in Rat Glutathione Transferase T2-2. Journal of Biological Chemistry, 2000, 275, 8618-8624.	3.4	19
124	The Human Glutathione Transferase P1-1 Specific Inhibitor TER 117 Designed for Overcoming Cytostatic-Drug Resistance Is also a Strong Inhibitor of Glyoxalase I. Molecular Pharmacology, 2000, 57, 619-624.	2.3	16
125	Tyrosine 50 at the Subunit Interface of Dimeric Human Glutathione Transferase P1-1 Is a Structural Key Residue for Modulating Protein Stability and Catalytic Function. Biochemical and Biophysical Research Communications, 2000, 271, 59-63.	2.1	52
126	Glutathione Transferase M2-2 Catalyzes Conjugation of Dopamine and Dopa o-Quinones. Biochemical and Biophysical Research Communications, 2000, 274, 32-36.	2.1	105

#	Article	IF	CITATIONS
127	Examination of the transcription factor NtcA-binding motif by in vitro selection of DNA sequences from a random library 1 1Edited by K. Nayai. Journal of Molecular Biology, 2000, 301, 783-793.	4.2	39
128	Structures of thermolabile mutants of human glutathione transferase P1-1 1 1Edited by R. Huber. Journal of Molecular Biology, 2000, 302, 295-302.	4.2	17
129	ROLE OF GLUTATHIONE TRANSFERASES IN THE METABOLISM OF ENDOBIOTICS AND XENOBIOTICS. Drug Metabolism and Pharmacokinetics, 2000, 15, 62-64.	0.0	0
130	Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue. Structure, 1999, 7, 1067-1078.	3.3	176
131	The C-Terminal Region of Human Clutathione Transferase A1-1 Affects the Rate of Clutathione Binding and the Ionization of the Active-Site Tyr9â€. Biochemistry, 1999, 38, 16268-16275.	2.5	52
132	Evolution of differential substrate specificities in Mu class glutathione transferases probed by DNA shuffling 1 1Edited by R. Huber. Journal of Molecular Biology, 1999, 287, 265-276.	4.2	58
133	Human glutathione transferase A4-4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products. Journal of Molecular Biology, 1999, 288, 427-439.	4.2	171
134	Benzoic acid derivatives induce recovery of catalytic activity in the partially inactive Met208Lys mutant of human glutathione transferase A1-1 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1999, 288, 787-800.	4.2	36
135	Unfolding and Refolding of Human Glyoxalase II and its Single-tryptophan Mutants. Journal of Molecular Biology, 1999, 291, 481-490.	4.2	10
136	Optimized Heterologous Expression of Glutathione Reductase from CyanobacteriumAnabaenaPCC 7120 and Characterization of the Recombinant Protein. Protein Expression and Purification, 1999, 15, 92-98.	1.3	13
137	Use of Silent Mutations in cDNA Encoding Human Glutathione Transferase M2-2 for Optimized Expression in Escherichia coli. Protein Expression and Purification, 1999, 17, 105-112.	1.3	45
138	Expression and Purification of the Transcription Factor NtcA from the Cyanobacterium Anabaena PCC 7120. Protein Expression and Purification, 1999, 17, 351-357.	1.3	11
139	An approach to optimizing the active site in a glutathione transferase by evolution in vitro. Biochemical Journal, 1999, 344, 93-100.	3.7	19
140	Catalytic Efficiency of Glutathione Transferase P1-1 Variants Towards Bay- and Fjord-Region Diol Epoxides of Polycyclic Aromatic Hydrocarbons. Polycyclic Aromatic Compounds, 1999, 17, 43-51.	2.6	1
141	Structural determinants in domain II of human glutathione transferase M2–2 govern the characteristic activities with aminochrome, 2â€cyanoâ€1, 3â€dimethylâ€1â€nitrosoguanidine, and 1, 2â€dichloroâ€4â€nitrobenzene. Protein Science, 1999, 8, 2742-2750.	7.6	23
142	Detoxication of carcinogenic fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferase P1-1 variants and glutathione. FEBS Letters, 1998, 438, 206-210.	2.8	39
143	Analysis of the Role of the Active Site Tyrosine in Human Glutathione Transferase A1-1 by Unnatural Amino Acid Mutagenesis. Journal of the American Chemical Society, 1998, 120, 451-452.	13.7	30
144	Structure-activity relationships and thermal stability of human glutathione transferase P1-1 governed by the H-site residue 105. Journal of Molecular Biology, 1998, 278, 687-698.	4.2	173

#	Article	IF	CITATIONS
145	Involvement of an Active-site Zn2+ Ligand in the Catalytic Mechanism of Human Glyoxalase I. Journal of Biological Chemistry, 1998, 273, 21623-21628.	3.4	74
146	Human glutathione transferase A4-4: an Alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochemical Journal, 1998, 330, 175-179.	3.7	341
147	Phospholipid hydroperoxide glutathione peroxidase activity of human glutathione transferases. Biochemical Journal, 1998, 332, 97-100.	3.7	145
148	Human Class Mu Glutathione Transferases, in Particular Isoenzyme M2-2, Catalyze Detoxication of the Dopamine Metabolite Aminochrome. Journal of Biological Chemistry, 1997, 272, 5727-5731.	3.4	117
149	The Conserved N-capping Box in the Hydrophobic Core of Glutathione S-Transferase P1–1 Is Essential for Refolding. Journal of Biological Chemistry, 1997, 272, 25518-25523.	3.4	39
150	Mutagenesis of residue 157 in the active site of human glyoxalase I. Biochemical Journal, 1997, 328, 231-235.	3.7	29
151	Molecular cloning and characterization of the thiolesterase glyoxalase II from <i>Arabidopsis thaliana</i> . Biochemical Journal, 1997, 322, 449-454.	3.7	45
152	3 Phospholipid hydroperoxide glutathione peroxidase activity of rat class Theta glutathione transferase T2-2. Biochemical Society Transactions, 1997, 25, S559-S559.	3.4	10
153	Clutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochemical Journal, 1997, 324, 25-28.	3.7	319
154	Conjugation of Highly Reactive Aflatoxin B1exo-8,9-Epoxide Catalyzed by Rat and Human Glutathione Transferases: Estimation of Kinetic Parametersâ€. Biochemistry, 1997, 36, 3056-3060.	2.5	79
155	Glutathione Conjugation of Bay- and Fjord-Region Diol Epoxides of Polycyclic Aromatic Hydrocarbons by Glutathione Transferases M1-1 and P1-1. Chemical Research in Toxicology, 1997, 10, 1221-1227.	3.3	105
156	Kinetic Characterization of Recombinant Human Glutathione Transferase T1-1, a Polymorphic Detoxication Enzyme. Archives of Biochemistry and Biophysics, 1997, 348, 247-254.	3.0	49
157	Characterization of a marsupial glutathione transferase, a class Alpha enzyme from Brown Antechinus (Antechinus stuartii) 1. FEBS Letters, 1997, 406, 216-219.	2.8	0
158	Reduction of thymine hydroperoxide by phospholipid hydroperoxide glutathione peroxidase and glutathione transferases. FEBS Letters, 1997, 410, 210-212.	2.8	52
159	Mechanism-Based Phage Display Selection of Active-Site Mutants of Human Clutathione Transferase A1-1 Catalyzing SNAr Reactions. Biochemistry, 1997, 36, 11252-11260.	2.5	55
160	Optimized Heterologous Expression of the Polymorphic Human Glutathione Transferase M1-1 Based on Silent Mutations in the Corresponding cDNA. Protein Expression and Purification, 1996, 7, 367-372.	1.3	20
161	Increased Cisplatin Sensitivity of Human Fibroblasts from a Subject with Inherent Glutathione Deficiency. Acta Oncológica, 1996, 35, 683-690.	1.8	10
162	Optimized heterologous expression of the human zinc enzyme glyoxalase I. Biochemical Journal, 1996, 314, 463-467.	3.7	54

#	Article	IF	CITATIONS
163	Glutathione Transferase A1-1 Catalyzed Conjugation of Polycyclic Aromatic Hydrocarbon Diol-Epoxides with Glutathione. Polycyclic Aromatic Compounds, 1996, 10, 51-57.	2.6	2
164	Molecular Cloning, Heterologous Expression, and Characterization of Human Glyoxalase II. Journal of Biological Chemistry, 1996, 271, 319-323.	3.4	69
165	CARCINOGENESIS: Glutathione S-transferase A1–1-catalysed conjugation of bay and fjord region diol epoxides of polycyclic aromatic hydrocarbons with glutathione. Carcinogenesis, 1996, 17, 1491-1498.	2.8	81
166	Glutathione Transferase P1–1 Expression in Human Melanoma Metastases: Correlation to <i>N-RAS</i> mutations and expression. Acta Oncológica, 1995, 34, 759-765.	1.8	8
167	The Expression of Glutathione Transferase Isoenzymes in Human Malignant Lymphoma Biopsies. Acta Oncol³gica, 1995, 34, 35-41.	1.8	6
168	Structural analysis of human alpha-class glutathione transferase A1-1 in the apo-form and in complexes with ethacrynic acid and its glutathione conjugate. Structure, 1995, 3, 717-727.	3.3	186
169	The High Activity of Rat Glutathione Transferase 8â^'8 with Alkene Substrates Is Dependent on a Glycine Residue in the Active Site. Journal of Biological Chemistry, 1995, 270, 29705-29709.	3.4	30
170	Cloning, Sequencing, and Regulation of the Glutathione Reductase Gene from the Cyanobacterium Anabaena PCC 7120. Journal of Biological Chemistry, 1995, 270, 22882-22889.	3.4	47
171	Glutathione Transferases with Novel Active Sites Isolated by Phage Display from a Library of Random Mutants. Journal of Molecular Biology, 1995, 250, 115-122.	4.2	102
172	Cell cycle dependent sensitivity of human melanoma cells to melphalan is correlated with the activity and cellular concentration of glutahione transferases. Carcinogenesis, 1994, 15, 99-103.	2.8	13
173	Acquired resistance to cisplatin and doxorubicin in a small cell lung cancer cell line is correlated to elevated expression of glutathione-linked detoxification enzymes. Carcinogenesis, 1994, 15, 1167-1173.	2.8	66
174	Engineering of a metal coordinating site into human glutathione transferase M1-1 based on immobilized metal ion affinity chromatography of homologous rat enzymes. Protein Engineering, Design and Selection, 1994, 7, 1115-1119.	2.1	26
175	Similar toxic effect of 1,3-BIS(2-chloroethyl)-1-nitrosourea on lymphocytes from human subjects differing in the expression of glutathione transferase M1-1. Biochemical Pharmacology, 1994, 47, 1777-1780.	4.4	4
176	lsoenzyme-specific quantitative immunoassays for cytosolic glutathione transferases and measurement of the enzymes in blood plasma from cancer patients and in tumor cell lines. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1994, 1225, 223-230.	3.8	34
177	Structure Determination and Refinement of Human Alpha Class Glutathione Transferase A1-1, and a Comparison with the Mu and Pi Class Enzymes. Journal of Molecular Biology, 1993, 232, 192-212.	4.2	453
178	Catalytic and molecular properties of glyoxalase I. Biochemical Society Transactions, 1993, 21, 515-517.	3.4	37
179	A structural role of histidine 15 in human glutathione transferase M1-1, an amino acid residue conserved in class Mu enzymes. Protein Engineering, Design and Selection, 1992, 5, 551-557.	2.1	10
180	Glutathione conjugation of trans-3,4-dihydroxy 1,2-epoxy l,2,3,4-tetrahydrobenzo[c]phenanthrene isomers by human glutathione transferases. Carcinogenesis, 1992, 13, 1549-1555.	2.8	29

#	Article	IF	CITATIONS
181	Heterologous expression of recombinant human glutathione transferase A1-1 from a hepatoma cell line. Protein Expression and Purification, 1992, 3, 80-84.	1.3	56
182	On the nature of leukotriene C4 synthase in human platelets. Archives of Biochemistry and Biophysics, 1992, 294, 70-74.	3.0	25
183	Effect of chronic hypoxia on detoxication enzymes in rat liver. Biochemical Pharmacology, 1992, 43, 2421-2426.	4.4	44
184	Mutation of an evolutionarily conserved tyrosine residue in the active site of a human class Alpha glutathione transferase. FEBS Letters, 1991, 293, 153-155.	2.8	108
185	Cysteine residues are not essential for the catalytic activity of human class Mu glutathione transferase M1a-1a. FEBS Letters, 1991, 293, 156-159.	2.8	24
186	[33] Leukotriene C4 synthase: Characterization in mouse mastocytoma cells. Methods in Enzymology, 1990, 187, 306-312.	1.0	9
187	Differences among human tumor cell lines in the expression of glutathione transferases and other glutathione-linked enzymes. Carcinogenesis, 1990, 11, 1569-1576.	2.8	75
188	Chromosomal localization of human glutathione transferase genes of classes alpha, mu and pi. Human Genetics, 1989, 82, 338-42.	3.8	41
189	Crystallization of GST2, a human class alpha glutathione transferase. Journal of Molecular Biology, 1989, 208, 369-370.	4.2	26
190	Glutathione conjugation: Mechanisms and biological significance. Trends in Biochemical Sciences, 1989, 14, 509.	7.5	0
191	Relaxed thiol substrate specificity of glutathione transferase effected by a non-substrate glutathione derivative. FEBS Letters, 1988, 231, 155-158.	2.8	25
192	Glutathione Transferases—Structure and Catalytic Activit. Critical Reviews in Biochemistry, 1988, 23, 283-337.	7.5	1,595
193	Conjugation of Styrene Oxide by the Basic and Acidic Forms of Glutathione Transferase in the Human Fetal Liver. Developmental Pharmacology and Therapeutics, 1988, 11, 243-251.	0.2	4
194	Expression of class Pi glutathione transferase in human malignant melanoma cells. Carcinogenesis, 1987, 8, 1929-1932.	2.8	104
195	The enzymes of glutathione metabolism: an overview. Biochemical Society Transactions, 1987, 15, 717-718.	3.4	81
196	Rat glutathione transferase 8-8, an enzyme efficiently detoxifying 4-hydroxyalk-2-enals. FEBS Letters, 1986, 203, 207-209.	2.8	151
197	Organ distribution of glutathione transferase isoenzymes in the human fetus: differences between liver and extrahepatic tissues. Biochemical Pharmacology, 1986, 35, 1616-1619.	4.4	35
198	Cytosolic rat liver glutathione transferase 4-4. Primary structure of the protein reveals extensive differences between homologous glutathione transferases of classes Alpha and Mu. FEBS Journal, 1986, 156, 343-350.	0.2	43

#	Article	IF	CITATIONS
199	Glutathione transferases in rat lung: the presence of transferase 7-7, highly efficient in the conjugation of glutathione with the carcinogenic (+)-7l²,8l̂±-dihydroxy-9l̂±,10l̂±-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene. Carcinogenesis, 1986, 7, 295-299.	2.8	121
200	[67] Thioltransferase from human placenta. Methods in Enzymology, 1985, 113, 520-524.	1.0	17
201	[63] Glutathione transferase isoenzymes from rat liver cytosol. Methods in Enzymology, 1985, 113, 504-507.	1.0	50
202	Purification of major basic glutathione transferase isoenzymes from rat liver by use of affinity chromatography and fast protein liquid chromatofocusing. Analytical Biochemistry, 1985, 146, 313-320.	2.4	131
203	[64] Glutathione transferase from rat testis. Methods in Enzymology, 1985, 113, 507-510.	1.0	104
204	[59] Glutathione reductase. Methods in Enzymology, 1985, 113, 484-490.	1.0	2,332
205	[62] Glutathione transferases from human liver. Methods in Enzymology, 1985, 113, 499-504.	1.0	222
206	Differences in the occurrence of glutathione transferase isoenzymes in rat lung and liver. Biochemical and Biophysical Research Communications, 1985, 127, 80-86.	2.1	32
207	Leukotriene C4 formation catalyzed by three distinct forms of human cytosolic glutathione transferase. Biochemical and Biophysical Research Communications, 1985, 128, 265-270.	2.1	55
208	The effect of 2,4,6-trinitrobenzenesulfonate on mercuric reductase, glutathione reductase and lipoamide dehydrogenase. FEBS Letters, 1985, 180, 102-106.	2.8	9
209	Inhibitors for distinction of three types of human glutathione transferase. FEBS Letters, 1985, 181, 249-252.	2.8	84
210	Structural evidence for three different types of glutathione transferase in human tissues. FEBS Letters, 1985, 182, 319-322.	2.8	56
211	4-Hydroxyalk-2-enals are substrates for glutathione transferase. FEBS Letters, 1985, 179, 267-270.	2.8	391
212	Selective expression of glutathione transferase isoenzymes in chemically induced preneoplastic rat heptocyte nodules. FEBS Letters, 1985, 187, 115-120.	2.8	58
213	Transformation of leukotriene A4 methyl ester to leukotriene C4 monomethyl ester by cytosolic rat glutathione transferases. FEBS Letters, 1984, 175, 289-293.	2.8	49
214	Glutathione transferases: Nomenclature. Biochemical Pharmacology, 1984, 33, 2539-2540.	4.4	239
215	Enzymes involved in glutathione metabolism in rat liver and blood after carbon tetrachloride intoxication. Toxicology Letters, 1983, 18, 285-289.	0.8	17
216	A set of inhibitors for discrimination between the basic isozymes of glutathione transferase in rat liver. Biochemical and Biophysical Research Communications, 1983, 114, 829-834.	2.1	55

#	Article	IF	CITATIONS
217	An essential role of cytosolic thioltransferase in protection of pyruvate kinase from rabbit liver against oxidative inactivation. FEBS Letters, 1983, 152, 114-118.	2.8	56
218	The amount and nature of glutathione transferases in rat liver microsomes determined by immunochemical methods. FEBS Letters, 1983, 160, 264-268.	2.8	42
219	[21] Regression analysis, experimental error, and statistical criteria in the design and analysis of experiments for discrimination between rival kinetic models. Methods in Enzymology, 1982, 87, 370-390.	1.0	149
220	Evaluation of the two-substrate pathway of glyoxalase I from yeast by use of carbonic anhydrase and rapid-kinetic studies. FEBS Letters, 1981, 131, 301-304.	2.8	18
221	[28] Glutathione transferase (human placenta). Methods in Enzymology, 1981, 77, 231-235.	1.0	559
222	Purification of a new glutathione S-transferase (transferase μ) from human liver having high activity with benzo(α)pyrene-4,5-oxide. Biochemical and Biophysical Research Communications, 1981, 98, 512-519.	2.1	125
223	Benzo(α)pyrene quinones can be generated by lipid peroxidation and are conjugated with glutathione by glutathione S-transferase B from rat liver. Biochemical and Biophysical Research Communications, 1981, 99, 682-690.	2.1	63
224	Probing the active site of glyoxalase I from human erythrocytes by use of the strong reversible inhibitor S-p-bromobenzylglutathione and metal substitutions. Biochemical Journal, 1981, 197, 67-75.	3.7	44
225	[36] Thioltransferase. Methods in Enzymology, 1981, 77, 281-285.	1.0	20
226	[55] Mixed (unsymmetric) disulfides: Coenzyme A-glutathione disulfide as an example. Methods in Enzymology, 1981, 77, 420-424.	1.0	6
227	Purification and characterization of glutathione reductase from calf liver. An improved procedure for affinity chromatography on 2′,5′-ADP-Sepharose 4B. Analytical Biochemistry, 1981, 116, 531-536.	2.4	69
228	[39] Glyoxalase I (rat liver). Methods in Enzymology, 1981, 77, 297-301.	1.0	48
229	Oxidase activity of glutathione reductase effected by 2,4,6-trinitrobenzenesulfonate. FEBS Letters, 1980, 115, 265-268.	2.8	16
230	Circular Dichroism Studies of Glutathione Reductase. FEBS Journal, 1980, 112, 487-491.	0.2	8
231	Purification of glutathione reductase from porcine erythrocytes by the use of affinity chromatography on 2′,5′-ADP-Sepharose 4B and crystallization of the enzyme. Analytical Biochemistry, 1979, 98, 335-340.	2.4	33
232	Purification of glyoxalase I from human erythrocytes by the use of affinity chromatography and separation of the three isoenzymes. Analytical Biochemistry, 1979, 92, 390-393.	2.4	44
233	Inhibition of glutathione reductase by interaction of 2,4,6-trinitrobenzenesulfonate with the active-site dithiol. FEBS Letters, 1979, 98, 263-266.	2.8	29
234	Binding of the competitive inhibitor S -(p -bromobenzyl)-glutathione to glyoxalase I from yeast. FEBS Letters, 1979, 102, 162-164.	2.8	14

IF

CITATIONS

235	The effect of ethanol on the steady-state kinetics of glutathione S -transferase a from rat liver. FEBS Letters, 1979, 102, 165-168.	2.8	5
236	Purification of glutathione S-transferases from rat lung by affinity chromatography. Evidence for an enzyme form absent in rat liver. Biochemical and Biophysical Research Communications, 1979, 86, 1304-1310.	2.1	85
237	Purification of Glutathione S-Transferase from Human Placenta Acta Chemica Scandinavica, 1979, 33b, 595-596.	0.7	75
238	An essential histidine residue in the catalytic mechanism of mammalian glutathione reductase. Biochemical and Biophysical Research Communications, 1978, 83, 558-564.	2.1	32
239	Glyoxalase I, a zinc metalloenzyme of mammals and yeast. Biochemical and Biophysical Research Communications, 1978, 81, 1235-1240.	2.1	99
240	Purification and characterization of cytoplasmic thioltransferase (glutathione:disulfide) Tj ETQq0 0 0 rgBT /Overl	ock 10 Tf	50 542 Td 138
241	Subunit structure of glyoxalase I from yeast. FEBS Letters, 1978, 85, 275-278.	2.8	18
242	Generalized definitions of inhibition patterns for non-michaelian enzyme steady-state kinetics. FEBS Letters, 1978, 93, 225-227.	2.8	11
243	Glutathione-Dependent Enzymes With Regulatory Properties. Biochemical Society Transactions, 1977, 5, 615-617.	3.4	0
244	Characterization of glyoxalase I purified from pig erythrocytes by affinity chromatography. Biochemical Journal, 1977, 165, 503-509.	3.7	62
245	Purification of glutathione reductase from erythrocytes by the use of affinity chromatography on 2′,5′-ADP-sepharose 4-B. FEBS Letters, 1976, 66, 221-224.	2.8	37
246	Error Structure of Enzyme Kinetic Experiments. Implications for Weighting in Regression Analysis of Experimental Data. FEBS Journal, 1976, 69, 61-67.	0.2	64
247	Inactivation of Glyoxalase I from Porcine Erythrocytes and Yeast by Amino-Group Reagents. FEBS Journal, 1975, 53, 327-333.	0.2	17
248	Graphical analysis of steady-state kinetic data of multireactant enzymes. Analytical Biochemistry, 1975, 63, 12-16.	2.4	12
249	Nonlinear regression methods in design of experiments and mathematical modelling. Applications to the analysis of the steady-state kinetics of glutathione reductase. BioSystems, 1975, 7, 101-119.	2.0	25
250	Synthesis of a mixed disulfide of egg white lysozyme and glutathione - a model substrate for enzymatic reduction of protein mixed disulfides. FEBS Letters, 1975, 53, 40-43.	2.8	15
251	Absence of a ping-pong pathway in the kinetic mechanism of glutathioneS-transferase a from rat liver. Evidence based on quantitative comparison of the asymptotic properties of experimental data and alternative rate equations. FEBS Letters, 1975, 56, 218-221.	2.8	21
252	Enzymatic catalysis of the reversible sulfitolysis of glutathione disulfide and the biological reduction of thiosulfate esters. Archives of Biochemistry and Biophysics, 1974, 163, 283-289.	3.0	29

ARTICLE

#

BENGT MANNERVIK

#	Article	IF	CITATIONS
253	Mechanism of action of enzymes catalyzing thiol-disulfide interchange. Thioltransferases rather than transhydrogenases. FEBS Letters, 1974, 38, 263-267.	2.8	62
254	The nature of the enzymatic reduction of the mixed disulfide of coenzyme A and glutathione. FEBS Letters, 1974, 39, 296-300.	2.8	17
255	A steady-state kinetic model of butyrylcholinesterase from horse plasma. Biochemical Journal, 1974, 141, 825-834.	3.7	38
256	The Steady-State Kinetics of Glyoxalase I from Porcine Erythrocytes. Evidence for a Random-Pathway Mechanism Involving One- and Two-Substrate Branches. FEBS Journal, 1973, 37, 270-281.	0.2	41
257	A branching reaction mechanism of glutathione reductase. Biochemical and Biophysical Research Communications, 1973, 53, 1151-1158.	2.1	63
258	Application of weight factors in the discrimination between mathematical models of enzyme kinetics. FEBS Letters, 1973, 32, 179-183.	2.8	2
259	Partial Purification and Characterization of Glyoxalase I from Porcine Erythrocytes. FEBS Journal, 1972, 29, 276-281.	0.2	44
260	Inhibition of yeast S-lactylglutathione lyase (glyoxalase I) by sulfhydryl reagents. Archives of Biochemistry and Biophysics, 1970, 137, 128-132.	3.0	25
261	Inhibition of choline acetyltransferase from bovine caudate nucleus by sulfhydryl reagents and reactivation of the inhibited enzyme. Biochemical Pharmacology, 1970, 19, 2509-2516.	4.4	55
262	The reduction of the L-cysteine-glutathione mixed disulfide in rat liver. involvement of an enzyme catalyzing thiol-disulfide interchange. FEBS Letters, 1970, 7, 26-28.	2.8	33
263	The Synthesis of a Mixed Disulfide of Glutathione and 3-Carboxy-4-nitrobenzenethiol ("Reduced) Tj ETQq1 1 0.78	4314 rgB7	[/gverlock]
264	Synthesis and some reactions of the pantetheine-glutathione mixed disulfide. Archives of Biochemistry and Biophysics, 1969, 134, 90-94.	3.0	14