Reinhold Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5461880/publications.pdf Version: 2024-02-01

	9786	8396
26,445	73	147
citations	h-index	g-index
251	251	32649
docs citations	times ranked	citing authors
	26,445 citations 251 docs citations	26,445 73 citations h-index 251 251 docs citations 251 times ranked

#	Article	IF	CITATIONS
1	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	21.4	3,741
2	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
3	Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nature Genetics, 2018, 50, 524-537.	21.4	1,124
4	Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nature Genetics, 2018, 50, 1412-1425.	21.4	924
5	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
6	Common genetic variants influence human subcortical brain structures. Nature, 2015, 520, 224-229.	27.8	772
7	Early inflammation and dementia: A 25â€year followâ€up of the Honoluluâ€Asia aging study. Annals of Neurology, 2002, 52, 168-174.	5.3	655
8	A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nature Genetics, 2019, 51, 957-972.	21.4	549
9	Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 2018, 9, 2098.	12.8	484
10	The genetic architecture of the human cerebral cortex. Science, 2020, 367, .	12.6	450
11	Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nature Communications, 2016, 7, 10023.	12.8	412
12	White matter lesion progression, brain atrophy, and cognitive decline: The Austrian stroke prevention study. Annals of Neurology, 2005, 58, 610-616.	5.3	357
13	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	27.8	353
14	Progression of White Matter Hyperintensities and Incidence of New Lacunes Over a 3-Year Period. Stroke, 2008, 39, 1414-1420.	2.0	348
15	Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders. American Journal of Human Genetics, 2018, 103, 691-706.	6.2	326
16	Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nature Communications, 2020, 11, 812.	12.8	316
17	Small Vessel Disease and General Cognitive Function in Nondisabled Elderly. Stroke, 2005, 36, 2116-2120.	2.0	311
18	Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nature Genetics, 2016, 48, 1462-1472.	21.4	284

2

#	Article	IF	CITATIONS
19	Progression of cerebral white matter lesions: 6-year results of the Austrian Stroke Prevention Study. Lancet, The, 2003, 361, 2046-2048.	13.7	275
20	Heterogeneity in age-related white matter changes. Acta Neuropathologica, 2011, 122, 171-185.	7.7	271
21	Impact of White Matter Hyperintensities Scoring Method on Correlations With Clinical Data. Stroke, 2006, 37, 836-840.	2.0	269
22	Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nature Genetics, 2019, 51, 1459-1474.	21.4	251
23	A Novel Imaging Marker for Small Vessel Disease Based on Skeletonization of White Matter Tracts and Diffusion Histograms. Annals of Neurology, 2016, 80, 581-592.	5.3	250
24	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	12.8	250
25	Magnetic Resonance Imaging of the Brain in Diabetes. Diabetes, 2004, 53, 687-692.	0.6	237
26	Meta-analysis of Genome-wide Association Studies Identifies 1q22 as a Susceptibility Locus for Intracerebral Hemorrhage. American Journal of Human Genetics, 2014, 94, 511-521.	6.2	235
27	Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer's disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurology, The, 2017, 16, 123-134.	10.2	233
28	Frequency and Location of Microbleeds in Patients With Primary Intracerebral Hemorrhage. Stroke, 2000, 31, 2665-2669.	2.0	219
29	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	14.8	213
30	<i>KLB</i> is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14372-14377.	7.1	208
31	Genomeâ€wide association studies of cerebral white matter lesion burden. Annals of Neurology, 2011, 69, 928-939.	5.3	201
32	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	21.4	192
33	Whole exome sequencing study identifies novel rare and common Alzheimer's-Associated variants involved in immune response and transcriptional regulation. Molecular Psychiatry, 2020, 25, 1859-1875.	7.9	191
34	Quantitative Susceptibility Mapping in Parkinson's Disease. PLoS ONE, 2016, 11, e0162460.	2.5	184
35	Directional dominance on stature and cognition inÂdiverse human populations. Nature, 2015, 523, 459-462.	27.8	173
36	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.8	173

#	Article	IF	CITATIONS
37	Consensus statement for diagnosis of subcortical small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 6-25.	4.3	173
38	Longitudinal Cognitive Decline in Subcortical Ischemic Vascular Disease – The LADIS Study. Cerebrovascular Diseases, 2009, 27, 384-391.	1.7	167
39	Multiethnic Genome-Wide Association Study of Cerebral White Matter Hyperintensities on MRI. Circulation: Cardiovascular Genetics, 2015, 8, 398-409.	5.1	162
40	A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease. NeuroImage, 2018, 167, 62-72.	4.2	160
41	Progression of Leukoaraiosis and Cognition. Stroke, 2007, 38, 2619-2625.	2.0	156
42	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	2.5	155
43	White matter changes and late-life depressive symptoms. British Journal of Psychiatry, 2007, 191, 212-217.	2.8	141
44	Serum neurofilament light is sensitive to active cerebral small vessel disease. Neurology, 2017, 89, 2108-2114.	1.1	139
45	Common variants at 6q22 and 17q21 are associated with intracranial volume. Nature Genetics, 2012, 44, 539-544.	21.4	126
46	R2* mapping for brain iron: associations with cognition in normal aging. Neurobiology of Aging, 2015, 36, 925-932.	3.1	122
47	GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes. Nature Communications, 2018, 9, 5141.	12.8	119
48	Evaluation of the Central Vein Sign as a Diagnostic Imaging Biomarker in Multiple Sclerosis. JAMA Neurology, 2019, 76, 1446.	9.0	119
49	Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity. Nature Communications, 2017, 8, 910.	12.8	118
50	Evolution of White Matter Lesions. Cerebrovascular Diseases, 2002, 13, 16-20.	1.7	116
51	Strategic white matter tracts for processing speed deficits in age-related small vessel disease. Neurology, 2014, 82, 1946-1950.	1.1	116
52	Global Burden of Small Vessel Disease–Related Brain Changes on MRI Predicts Cognitive and Functional Decline. Stroke, 2020, 51, 170-178.	2.0	115
53	Genome-wide association study of kidney function decline in individuals of European descent. Kidney International, 2015, 87, 1017-1029.	5.2	113
54	Free water determines diffusion alterations and clinical status in cerebral small vessel disease. Alzheimer's and Dementia, 2018, 14, 764-774.	0.8	108

#	Article	IF	CITATIONS
55	MTI of white matter hyperintensities. Brain, 2005, 128, 2926-2932.	7.6	104
56	Dysbiosis, gut barrier dysfunction and inflammation in dementia: a pilot study. BMC Geriatrics, 2020, 20, 248.	2.7	104
57	Combining anatomical, diffusion, and resting state functional magnetic resonance imaging for individual classification of mild and moderate Alzheimer's disease. NeuroImage: Clinical, 2016, 11, 46-51.	2.7	98
58	1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function. Scientific Reports, 2017, 7, 45040.	3.3	98
59	Early Dysphagia Screening by Trained Nurses Reduces Pneumonia Rate in Stroke Patients. Stroke, 2017, 48, 2583-2585.	2.0	91
60	White Matter Lesion Progression in LADIS. Stroke, 2012, 43, 2643-2647.	2.0	88
61	Enlarged perivascular spaces and cognition. Neurology, 2018, 91, e832-e842.	1.1	88
62	The relation of cerebral magnetic resonance signal hyperintensities to Alzheimer's disease. Journal of the Neurological Sciences, 1996, 142, 121-125.	0.6	87
63	FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer's disease. Alzheimer's Research and Therapy, 2018, 10, 108.	6.2	87
64	Validation of "laboratoryâ€supported―criteria for functional (psychogenic) tremor. Movement Disorders, 2016, 31, 555-562.	3.9	86
65	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	12.8	84
66	Diffusion-Weighted Imaging and Cognition in the Leukoariosis and Disability in the Elderly Study. Stroke, 2010, 41, e402-8.	2.0	82
67	Association of Alzheimer's disease GWAS loci with MRI markers of brain aging. Neurobiology of Aging, 2015, 36, 1765.e7-1765.e16.	3.1	82
68	Driving Cessation and Dementia: Results of the Prospective Registry on Dementia in Austria (PRODEM). PLoS ONE, 2012, 7, e52710.	2.5	82
69	C-Reactive Protein, Carotid Atherosclerosis, and Cerebral Small-Vessel Disease. Stroke, 2006, 37, 2910-2916.	2.0	80
70	Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1319-1337.	4.3	80
71	Assessment of Cerebrovascular Risk Profiles in Healthy Persons: Definition of Research Goals and the Austrian Stroke Prevention Study (ASPS). Neuroepidemiology, 1994, 13, 308-313.	2.3	79
72	MRI-Defined Subcortical Ischemic Vascular Disease: Baseline Clinical and Neuropsychological Findings. Cerebrovascular Diseases, 2009, 27, 336-344.	1.7	78

#	Article	IF	CITATIONS
73	MRI Cerebral White Matter Lesions and Paraoxonase PON1 Polymorphisms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1811-1816.	2.4	77
74	Risk factors for microangiopathy-related cerebral damage in the Austrian stroke prevention study. Journal of the Neurological Sciences, 1997, 152, 15-21.	0.6	76
75	Cerebral changes on MRI and cognitive function: The CASCADE study. Neurobiology of Aging, 2006, 27, 16-23.	3.1	76
76	Longitudinal change of small-vessel disease-related brain abnormalities. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 26-39.	4.3	76
77	Genome-wide association study of cerebral small vessel disease reveals established and novel loci. Brain, 2019, 142, 3176-3189.	7.6	76
78	Genetic variation at 16q24.2 is associated with small vessel stroke. Annals of Neurology, 2017, 81, 383-394.	5.3	73
79	Common Genetic Variation Indicates Separate Causes for Periventricular and Deep White Matter Hyperintensities. Stroke, 2020, 51, 2111-2121.	2.0	71
80	Cross-sectional and Longitudinal Assessment of Brain Iron Level in Alzheimer Disease Using 3-T MRI. Radiology, 2020, 296, 619-626.	7.3	71
81	β-Fibrinogen Gene Polymorphism (C ₁₄₈ →T) Is Associated With Carotid Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 487-492.	2.4	70
82	Genome-wide Studies of Verbal Declarative Memory in Nondemented Older People: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Biological Psychiatry, 2015, 77, 749-763.	1.3	67
83	Simple MRI score aids prediction of dementia in cerebral small vessel disease. Neurology, 2020, 94, e1294-e1302.	1.1	67
84	Diffusion changes predict cognitive and functional outcome: The <scp>LADIS</scp> study. Annals of Neurology, 2013, 73, 576-583.	5.3	66
85	Cognitive Deficits and Related BrainÂLesions in Patients With ChronicÂHeart Failure. JACC: Heart Failure, 2018, 6, 583-592.	4.1	66
86	Angiotensinogen Polymorphism M235T, Carotid Atherosclerosis, and Small-Vessel Disease-Related Cerebral Abnormalities. Hypertension, 2001, 38, 110-115.	2.7	64
87	ADAMANT: a placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer's disease. Nature Aging, 2021, 1, 521-534.	11.6	64
88	Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging. NeuroImage, 2017, 152, 476-481.	4.2	61
89	Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nature Communications, 2020, 11, 4796.	12.8	61
90	Determinants of iron accumulation in the normal aging brain. Neurobiology of Aging, 2016, 43, 149-155.	3.1	59

#	Article	IF	CITATIONS
91	Fitness and cognition in the elderly. Neurology, 2016, 86, 418-424.	1.1	58
92	International Multicenter Analysis of Brain Structure Across Clinical Stages of Parkinson's Disease. Movement Disorders, 2021, 36, 2583-2594.	3.9	54
93	Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data. Stroke, 2019, 50, 1734-1741.	2.0	52
94	MRI-detected white matter lesions: do they really matter?. Journal of Neural Transmission, 2011, 118, 673-681.	2.8	51
95	Physical activity in the elderly is associated with improved executive function and processing speed: the LADIS Study. International Journal of Geriatric Psychiatry, 2015, 30, 744-750.	2.7	51
96	Vitamin D and cognitive function: A Mendelian randomisation study. Scientific Reports, 2017, 7, 13230.	3.3	50
97	Outcome after acute ischemic stroke is linked to sex-specific lesion patterns. Nature Communications, 2021, 12, 3289.	12.8	50
98	White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts – The MRI-GENIE study. NeuroImage: Clinical, 2019, 23, 101884.	2.7	48
99	The natural course of MRI white matter hyperintensities. Journal of the Neurological Sciences, 2002, 203-204, 253-257.	0.6	46
100	A priori collaboration in population imaging: The Uniform Neuroâ€Imaging of Virchowâ€Robin Spaces Enlargement consortium. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2015, 1, 513-520.	2.4	46
101	Identification of a 140-kDa activation antigen as a target structure for a series of human cloned natural killer cell lines. European Journal of Immunology, 1984, 14, 844-852.	2.9	45
102	Comparison of the Alzheimer's Disease Assessment Scale Cognitive Subscale and the Vascular Dementia Assessment Scale in Differentiating Elderly Individuals with Different Degrees of White Matter Changes. Dementia and Geriatric Cognitive Disorders, 2007, 24, 73-81.	1.5	45
103	Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood–brain barrier model. Alzheimer's Research and Therapy, 2013, 5, 51.	6.2	45
104	Pathogenic Ischemic Stroke Phenotypes in the NINDS-Stroke Genetics Network. Stroke, 2014, 45, 3589-3596.	2.0	45
105	Cognitive reserve moderates long-term cognitive and functional outcome in cerebral small vessel disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1296-1302.	1.9	45
106	Genome-wide Trans-ethnic Meta-analysis Identifies Seven Genetic Loci Influencing Erythrocyte Traits and a Role for RBPMS in Erythropoiesis. American Journal of Human Genetics, 2017, 100, 51-63.	6.2	45
107	Cognition, Gender, and Functional Abilities in Alzheimer's Disease: How are They Related?. Journal of Alzheimer's Disease, 2013, 35, 247-252.	2.6	43
108	Quantitative EEG markers relate to Alzheimer's disease severity in the Prospective Dementia Registry Austria (PRODEM). Clinical Neurophysiology, 2015, 126, 505-513.	1.5	43

#	Article	IF	CITATIONS
109	Brain Activity Changes in Cognitive Networks in Relapsing-Remitting Multiple Sclerosis – Insights from a Longitudinal fMRI Study. PLoS ONE, 2014, 9, e93715.	2.5	42
110	Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline. Kidney International, 2021, 99, 926-939.	5.2	42
111	Functional Connectivity Changes and Executive and Social Problems in Neurofibromatosis Type I. Brain Connectivity, 2015, 5, 312-320.	1.7	41
112	Association between increased magnetic susceptibility of deep gray matter nuclei and decreased motor function in healthy adults. NeuroImage, 2015, 105, 45-52.	4.2	41
113	Caregiving and Caregiver Burden in Dementia Home Care: Results from the Prospective Dementia Registry (PRODEM) of the Austrian Alzheimer Society. Journal of Alzheimer's Disease, 2018, 63, 103-114.	2.6	41
114	Cortical Superficial Siderosis in Different Types of Cerebral Small Vessel Disease. Stroke, 2017, 48, 1404-1407.	2.0	40
115	Low-dose ladostigil for mild cognitive impairment. Neurology, 2019, 93, e1474-e1484.	1.1	40
116	Association of common genetic variants with brain microbleeds. Neurology, 2020, 95, e3331-e3343.	1.1	40
117	Factors influencing serum neurofilament light chain levels in normal aging. Aging, 2021, 13, 25729-25738.	3.1	38
118	Association of variants in <i>HTRA1</i> and <i>NOTCH3</i> with MRI-defined extremes of cerebral small vessel disease in older subjects. Brain, 2019, 142, 1009-1023.	7.6	37
119	Small vessel disease more than Alzheimer's disease determines diffusion MRI alterations in memory clinic patients. Alzheimer's and Dementia, 2020, 16, 1504-1514.	0.8	35
120	Magnetization Transfer Ratio Relates to Cognitive Impairment in Normal Elderly. Frontiers in Aging Neuroscience, 2014, 6, 263.	3.4	34
121	Quantitative EEG in Alzheimer's disease: Cognitive state, resting state and association with disease severity. International Journal of Psychophysiology, 2014, 93, 390-397.	1.0	34
122	White matter hyperintensity burden in acute stroke patients differs by ischemic stroke subtype. Neurology, 2020, 95, e79-e88.	1.1	34
123	Quantitation of brain tissue changes associated with white matter hyperintensities by diffusionâ€weighted and magnetization transfer imaging: The LADIS (leukoaraiosis and disability in the) Tj ETQq1	. 13047843	31 48 gBT /O√
124	Cerebrovascular Biomarker Profile Is Related to White Matter Disease and Ventricular Dilation in a LADIS Substudy. Dementia and Geriatric Cognitive Disorders Extra, 2014, 4, 385-394.	1.3	33
125	Brain Magnetic Resonance Imaging Findings Fail to Suspect Fabry Disease in Young Patients With an Acute Cerebrovascular Event. Stroke, 2015, 46, 1548-1553.	2.0	33
126	Genetic variants inCETPincrease risk of intracerebral hemorrhage. Annals of Neurology, 2016, 80, 730-740.	5.3	33

#	Article	IF	CITATIONS
127	Grey-matter network disintegration as predictor of cognitive and motor function with aging. Brain Structure and Function, 2018, 223, 2475-2487.	2.3	33
128	Multi-shell Diffusion MRI Models for White Matter Characterization in Cerebral Small Vessel Disease. Neurology, 2021, 96, e698-e708.	1.1	33
129	Quantitative EEG Markers of Entropy and Auto Mutual Information in Relation to MMSE Scores of Probable Alzheimer's Disease Patients. Entropy, 2017, 19, 130.	2.2	32
130	European Stroke Organisation and European Academy of Neurology joint guidelines on post-stroke cognitive impairment. European Stroke Journal, 2021, 6, I-XXXVIII.	5.5	32
131	Genome-wide association study of 23,500 individuals identifies 7 loci associated with brain ventricular volume. Nature Communications, 2018, 9, 3945.	12.8	31
132	Temporal changes in total and hippocampal brain volume and cognitive function in patients with chronic heart failure—the COGNITION.MATTERS-HF cohort study. European Heart Journal, 2021, 42, 1569-1578.	2.2	31
133	White matter hyperintensities alter functional organization of the motor system. Neurobiology of Aging, 2012, 33, 197.e1-197.e9.	3.1	30
134	Proportion of Women and Reporting of Outcomes by Sex in Clinical Trials for Alzheimer Disease. JAMA Network Open, 2021, 4, e2124124.	5.9	30
135	Dolichoectasia and Small Vessel Disease in Young Patients With Transient Ischemic Attack and Stroke. Stroke, 2017, 48, 2361-2367.	2.0	28
136	White Matter Lesion Progression. Stroke, 2015, 46, 3048-3057.	2.0	27
137	A genome-wide association study identifies genetic loci associated with specific lobar brain volumes. Communications Biology, 2019, 2, 285.	4.4	27
138	White Matter Hyperintensities in Alzheimer's Disease: A Lesion Probability Mapping Study. Journal of Alzheimer's Disease, 2019, 68, 789-796.	2.6	27
139	Age-Related Changes of Peak Width Skeletonized Mean Diffusivity (PSMD) Across the Adult Lifespan: A Multi-Cohort Study. Frontiers in Psychiatry, 2020, 11, 342.	2.6	26
140	Subcortical vascular cognitive impairment: Similarities and differences with multiple sclerosis. Journal of the Neurological Sciences, 2006, 245, 3-7.	0.6	25
141	Associations of event-related brain potentials and Alzheimer's disease severity: A longitudinal study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 92, 31-38.	4.8	25
142	Prediction of 3-year clinical course in CADASIL. Neurology, 2016, 87, 1787-1795.	1.1	24
143	Early Progressive Changes in White Matter Integrity Are Associated with Stroke Recovery. Translational Stroke Research, 2020, 11, 1264-1272.	4.2	24
144	Kidney Function and White Matter Disease in Young Stroke Patients. Stroke, 2012, 43, 2382-2388.	2.0	23

#	Article	IF	CITATIONS
145	Magnetization Transfer Imaging for in vivo Detection of Microstructural Tissue Changes in Aging and Dementia: A Short Literature Review. Journal of Alzheimer's Disease, 2014, 42, S229-S237.	2.6	22
146	Recommendations From the International Stroke Genetics Consortium, Part 1. Stroke, 2015, 46, 279-284.	2.0	22
147	Polygenic Overlap Between Kidney Function and Large Artery Atherosclerotic Stroke. Stroke, 2014, 45, 3508-3513.	2.0	21
148	Early-Stage White Matter Lesions Detected by Multispectral MRI Segmentation Predict Progressive Cognitive Decline. Frontiers in Neuroscience, 2015, 9, 455.	2.8	21
149	Remote changes after ischaemic infarcts: a distant target for therapy?. Brain, 2017, 140, 1818-1820.	7.6	21
150	Different Types of White Matter Hyperintensities in CADASIL. Frontiers in Neurology, 2018, 9, 526.	2.4	21
151	Tremor associated with Klinefelter syndrome – A case series and review of the literature. Parkinsonism and Related Disorders, 2014, 20, 323-327.	2.2	20
152	Gender-Specific Differences in Cognitive Profiles of Patients with Alzheimer's Disease: Results of the Prospective Dementia Registry Austria (PRODEM-Austria). Journal of Alzheimer's Disease, 2015, 46, 631-637.	2.6	20
153	Genetics of Vascular Cognitive Impairment. Stroke, 2019, 50, 765-772.	2.0	20
154	Neuroimaging markers of global cognition in early Alzheimer's disease: A magnetic resonance imaging–electroencephalography study. Brain and Behavior, 2019, 9, e01197.	2.2	20
155	European Academy of Neurology/European Alzheimer's Disease Consortium position statement on diagnostic disclosure, biomarker counseling, and management of patients with mild cognitive impairment. European Journal of Neurology, 2021, 28, 2147-2155.	3.3	20
156	Motor sequence learning and motor adaptation in primary cervical dystonia. Journal of Clinical Neuroscience, 2014, 21, 934-938.	1.5	19
157	Alterations and test–retest reliability of functional connectivity network measures in cerebral small vessel disease. Human Brain Mapping, 2020, 41, 2629-2641.	3.6	19
158	Nigral iron deposition in common tremor disorders. Movement Disorders, 2019, 34, 129-132.	3.9	18
159	Brain Volume: An Important Determinant of Functional Outcome After Acute Ischemic Stroke. Mayo Clinic Proceedings, 2020, 95, 955-965.	3.0	18
160	Callosal tissue loss parallels subtle decline in psychomotor speed. A longitudinal quantitative MRI study. The LADIS Study. Neuropsychologia, 2012, 50, 1650-1655.	1.6	17
161	Exome Chip Analysis Identifies Low-Frequency and Rare Variants in <i>MRPL38</i> for White Matter Hyperintensities on Brain Magnetic Resonance Imaging. Stroke, 2018, 49, 1812-1819.	2.0	17
162	Minor gait impairment despite white matter damage in pure small vessel disease. Annals of Clinical and Translational Neurology, 2019, 6, 2026-2036.	3.7	17

#	Article	IF	CITATIONS
163	Intracranial Pulsatility in Relation to Severity and Progression of Cerebral White Matter Hyperintensities. Stroke, 2020, 51, 3302-3309.	2.0	17
164	Personality Polygenes, Positive Affect, and Life Satisfaction. Twin Research and Human Genetics, 2016, 19, 407-417.	0.6	16
165	Global and Regional Development of the Human Cerebral Cortex: Molecular Architecture and Occupational Aptitudes. Cerebral Cortex, 2020, 30, 4121-4139.	2.9	16
166	Quantifying synchrony patterns in the EEG of Alzheimer's patients with linear and non-linear connectivity markers. Journal of Neural Transmission, 2016, 123, 297-316.	2.8	15
167	Specific Neuropsychiatric Symptoms Are Associated with Faster Progression in Alzheimer's Disease: Results of the Prospective Dementia Registry (PRODEM-Austria). Journal of Alzheimer's Disease, 2020, 73, 125-133.	2.6	15
168	Prediction of dementia using diffusion tensor MRI measures: the OPTIMAL collaboration. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 14-23.	1.9	15
169	Leukocyte Telomere Length Is Related to Brain Parenchymal Fraction and Attention/Speed in the Elderly: Results of the Austrian Stroke Prevention Study. Frontiers in Psychiatry, 2020, 11, 100.	2.6	14
170	FMRI to probe sex-related differences in brain function with multitasking. PLoS ONE, 2017, 12, e0181554.	2.5	14
171	Vascular cognitive impairment $\hat{a} \in$ " An ill-defined concept with the need to define its vascular component. Journal of the Neurological Sciences, 2012, 322, 11-16.	0.6	12
172	Genetic variants influencing elevated myeloperoxidase levels increase risk of stroke. Brain, 2017, 140, 2663-2672.	7.6	12
173	Effects of Psychotropic Medication on Cognition, Caregiver Burden, and Neuropsychiatric Symptoms in Alzheimer's Disease over 12 Months: Results from a Prospective Registry of Dementia in Austria (PRODEM). Journal of Alzheimer's Disease, 2019, 71, 623-630.	2.6	12
174	MRI Radiomic Signature of White Matter Hyperintensities Is Associated With Clinical Phenotypes. Frontiers in Neuroscience, 2021, 15, 691244.	2.8	12
175	Multimodal assessment of white matter tracts in amyotrophic lateral sclerosis. PLoS ONE, 2017, 12, e0178371.	2.5	12
176	Microstructural tissue damage in normal appearing brain tissue accumulates with Framingham Stroke Risk Profile Score: Magnetization transfer imaging results of the Austrian Stroke Prevention Study. Clinical Neurology and Neurosurgery, 2013, 115, 1317-1321.	1.4	11
177	Family History in Young Patients With Stroke. Stroke, 2015, 46, 1975-1978.	2.0	11
178	Features and Determinants of Lacune Shape. Stroke, 2016, 47, 1258-1264.	2.0	11
179	Excessive White Matter Hyperintensity Increases Susceptibility to Poor Functional Outcomes After Acute Ischemic Stroke. Frontiers in Neurology, 2021, 12, 700616.	2.4	11
180	Subtype Specificity of Genetic Loci Associated With Stroke in 16 664 Cases and 32 792 Controls. Circulation Genomic and Precision Medicine, 2019, 12, e002338.	3.6	10

#	Article	IF	CITATIONS
181	Incidental findings of typical iNPH imaging signs in asymptomatic subjects with subclinical cognitive decline. Fluids and Barriers of the CNS, 2021, 18, 37.	5.0	10
182	Clinical signs in young patients with stroke related to FAST: results of the sifap1 study. BMJ Open, 2014, 4, e005276.	1.9	9
183	Aging associated changes in the motor control of ankle movements in the brain. Neurobiology of Aging, 2014, 35, 2222-2229.	3.1	9
184	Gray matter heritability in familyâ€based and populationâ€based studies using voxelâ€based morphometry. Human Brain Mapping, 2017, 38, 2408-2423.	3.6	9
185	Lower Magnetization Transfer Ratio in the Forceps Minor Is Associated with Poorer Gait Velocity in Older Adults. American Journal of Neuroradiology, 2017, 38, 500-506.	2.4	9
186	Long-term course and morphological MRI correlates of cognitive function in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 954-963.	3.0	9
187	New development in diagnosis of vascular cognitive impairment. Journal of the Neurological Sciences, 2010, 299, 11-14.	0.6	8
188	Diabetes. Neurology, 2015, 84, 2300-2301.	1.1	8
189	Evaluation of the Performance of AmpliSeq and SureSelect Exome Sequencing Libraries for Ion Proton. Frontiers in Genetics, 2019, 10, 856.	2.3	8
190	Sex-specific lesion pattern of functional outcomes after stroke. Brain Communications, 2022, 4, fcac020.	3.3	8
191	MRI in Dementia. Neurologic Clinics, 2009, 27, 221-236.	1.8	7
192	Tracking of Magnetite Labeled Nanoparticles in the Rat Brain Using MRI. PLoS ONE, 2014, 9, e92068.	2.5	7
193	Association of vitamin D metabolites with cognitive function and brain atrophy in elderly individuals - the Austrian stroke prevention study. Aging, 2021, 13, 9455-9467.	3.1	7
194	Free water diffusion MRI and executive function with a speed component in healthy aging. NeuroImage, 2022, 257, 119303.	4.2	7
195	Predicting rapid cognitive decline in Alzheimer's disease patients using quantitative EEG markers and neuropsychological test scores. , 2016, 2016, 6078-6081.		6
196	Detection of mild cognitive impairment in a communityâ€dwelling population using quantitative, multiparametric MRIâ€based classification. Human Brain Mapping, 2019, 40, 2711-2722.	3.6	6
197	Hospital admissions of acute cerebrovascular diseases during and after the first wave of the COVID-19 pandemic: a state-wide experience from Austria. Journal of Neurology, 2021, 268, 3584-3588.	3.6	6
198	Gene-mapping study of extremes of cerebral small vessel disease reveals TRIM47 as a strong candidate. Brain, 2022, 145, 1992-2007.	7.6	6

#	Article	IF	CITATIONS
199	Diffusion-Weighted Imaging, MR Angiography, and Baseline Data in a Systematic Multicenter Analysis of 3,301 MRI Scans of Ischemic Stroke Patients—Neuroradiological Review Within the MRI-GENIE Study. Frontiers in Neurology, 2020, 11, 577.	2.4	5
200	Microstructural Tissue Changes in Alzheimer Disease Brains: Insights from Magnetization Transfer Imaging. American Journal of Neuroradiology, 2021, 42, 688-693.	2.4	5
201	The impact of folate and vitamin B12 status on cognitive function and brain atrophy in healthy elderly and demented Austrians, a retrospective cohort study. Aging, 2020, 12, 15478-15491.	3.1	5
202	Anatomically Standardized Detection of MRI Atrophy Patterns in Early-Stage Alzheimer's Disease. Brain Sciences, 2021, 11, 1491.	2.3	5
203	Serum NfL in Alzheimer Dementia: Results of the Prospective Dementia Registry Austria. Medicina (Lithuania), 2022, 58, 433.	2.0	5
204	Periventricular magnetisation transfer abnormalities in early multiple sclerosis. NeuroImage: Clinical, 2022, 34, 103012.	2.7	5
205	Structural Brain MRI Trait Polygenic Score Prediction of Cognitive Abilities. Twin Research and Human Genetics, 2015, 18, 738-745.	0.6	4
206	Pre-trained MRI-based Alzheimer's disease classification models to classify memory clinic patients. NeuroImage: Clinical, 2020, 27, 102303.	2.7	4
207	Slow Progression of White-Matter Changes. International Psychogeriatrics, 2003, 15, 173-176.	1.0	3
208	Predictors of Patient Dependence in Mild-to-Moderate Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 43, 443-449.	2.6	3
209	P1-270: DETERMINANTS OF ENLARGED VIRCHOW-ROBIN SPACES: THE UNIVRSE CONSORTIUM. , 2014, 10, P408-P408.		3
210	MRI in Dementia. Magnetic Resonance Imaging Clinics of North America, 2010, 18, 121-132.	1.1	2
211	Brain FDG-PET: clinical use in dementing neurodegenerative conditions. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1467-1469.	6.4	2
212	Electroencephalographic complexity markers explain neuropsychological test scores in Alzheimer's disease. , 2014, , .		1
213	Cerebral small vessel disease imaging as a surrogate marker for clinical trials. , 2014, , 336-346.		1
214	[ICâ€Pâ€028]: A COMPREHENSIVE ANALYSIS OF RESTING STATE FMRI MEASURES TO CLASSIFY INDIVIDUAL PATIENTS WITH ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P26.	0.8	1
215	Full exploitation of high dimensionality in brain imaging: The JPND working group statement and findings. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 286-290.	2.4	1
216	Gray Matter Covariance Networks as Classifiers and Predictors of Cognitive Function in Alzheimer's Disease. Frontiers in Psychiatry, 2020, 11, 360.	2.6	1

#	Article	IF	CITATIONS
217	Minor Structural Differences in the Cervical Spine Between Patients With Cervical Dystonia and Age-Matched Healthy Controls. Frontiers in Neurology, 2020, 11, 472.	2.4	1
218	The relationship between plasma free fatty acids, cognitive function and structural integrity of the brain in middle-aged healthy humans. Aging, 2021, 13, 22078-22091.	3.1	1
219	Genetic architecture of orbital telorism. Human Molecular Genetics, 2021, , .	2.9	1
220	Analyzing Hierarchical Multi-View MRI Data With StaPLR: An Application to Alzheimer's Disease Classification. Frontiers in Neuroscience, 2022, 16, 830630.	2.8	1
221	O3-01-01: Genome-wide association studies of hippocampal volume: The CHARGE consortium. , 2011, 7, S495-S496.		0
222	O4-04-05: ASSOCIATION OF ALZHEIMER DISEASE GWAS LOCI WITH MRI-MARKERS OF BRAIN AGING. , 2014, 10, P258-P258.		0
223	Detection and analysis of human serum albumin nanoparticles within phagocytic cells at the resolution of individual live cell or single 3D multicellular spheroid. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	0
224	O2-10-02: Genetic Determinants of MRI Subcortical Brain Structures: 24 Novel Loci Identified Through Gwas in 26,000 Persons. , 2016, 12, P251-P251.		0
225	[ICâ€Pâ€145]: INDIVIDUAL CLASSIFICATION OF ALZHEIMER'S DISEASE WITH DIFFUSION MAGNETIC RESONANCE IMAGING. Alzheimer's and Dementia, 2017, 13, P111.	0.8	0
226	Identifying novel genetic risk loci for lacunar stroke. Lancet Neurology, The, 2021, 20, 329-330.	10.2	0
227	Functional (un-)Coupling: Impairment, Compensation, and Future Progression in Alzheimer's Disease. Clinical EEG and Neuroscience, 2021, , 155005942110522.	1.7	0
228	Kidney function, brain morphology and cognition in the elderly: sex differences in the Austrian Stroke Prevention Study. Aging, 2022, 14, 240-252.	3.1	0