Per Halkjær Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5459703/publications.pdf

Version: 2024-02-01

314 papers 33,813 citations

91 h-index 168 g-index

336 all docs

336 docs citations

times ranked

336

20574 citing authors

#	Article	IF	CITATIONS
1	Monitoring antibiotic resistance genes in wastewater environments: The challenges of filling a gap in the One-Health cycle. Journal of Hazardous Materials, 2022, 424, 127407.	6.5	60
2	The novel genus, â€~ <i>Candidatus</i> Phosphoribacter', previously identified as <i>Tetrasphaera</i> , is the dominant polyphosphate accumulating lineage in EBPR wastewater treatment plants worldwide. ISME Journal, 2022, 16, 1605-1616.	4.4	41
3	Microbial communities across activated sludge plants show recurring species-level seasonal patterns. ISME Communications, 2022, 2, .	1.7	18
4	Quantification of Biologically and Chemically Bound Phosphorus in Activated Sludge from Full-Scale Plants with Biological P-Removal. Environmental Science & Eamp; Technology, 2022, 56, 5132-5140.	4.6	15
5	MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants. Nature Communications, 2022, 13, 1908.	5.8	114
6	Seasonal microbial community dynamics complicates the evaluation of filamentous bulking mitigation strategies in full-scale WRRFs. Water Research, 2022, 216, 118340.	5.3	14
7	Global warming readiness: Feasibility of enhanced biological phosphorus removal at 35°C. Water Research, 2022, 216, 118301.	5.3	25
8	Reevaluation of the Phylogenetic Diversity and Global Distribution of the Genus " <i>Candidatus</i> Accumulibacter― MSystems, 2022, 7, e0001622.	1.7	22
9	Exploring the microbial influence on seasonal nitrous oxide concentration in a full-scale wastewater treatment plant using metagenome assembled genomes. Water Research, 2022, 219, 118563.	5.3	5
10	Fouling of membranes in membrane bioreactors for wastewater treatment: Planktonic bacteria can have a significant contribution. Water Environment Research, 2021, 93, 207-216.	1.3	10
11	Flow-through stable isotope probing (Flow-SIP) minimizes cross-feeding in complex microbial communities. ISME Journal, 2021, 15, 348-353.	4.4	14
12	Identification of microorganisms responsible for foam formation in mesophilic anaerobic digesters treating surplus activated sludge. Water Research, 2021, 191, 116779.	5.3	18
13	Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nature Communications, 2021, 12, 2009.	5.8	177
14	High Diversity and Functional Potential of Undescribed "Acidobacteriota―in Danish Wastewater Treatment Plants. Frontiers in Microbiology, 2021, 12, 643950.	1.5	56
15	Characterizing the growing microorganisms at species level in 46 anaerobic digesters at Danish wastewater treatment plants: A six-year survey on microbial community structure and key drivers. Water Research, 2021, 193, 116871.	5.3	51
16	Parasitic bacteria control foam formation. Nature Microbiology, 2021, 6, 701-702.	5.9	1
17	Low Global Diversity of Candidatus Microthrix, a Troublesome Filamentous Organism in Full-Scale WWTPs. Frontiers in Microbiology, 2021, 12, 690251.	1.5	18
18	Mass-immigration determines the assembly of activated sludge microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	48

#	Article	IF	CITATIONS
19	" <i>Candidatus</i> Dechloromonas phosphoritropha―and " <i>Ca</i> . D. phosphorivorans― novel polyphosphate accumulating organisms abundant in wastewater treatment systems. ISME Journal, 2021, 15, 3605-3614.	4.4	80
20	Long-term operation assessment of a full-scale membrane-aerated biofilm reactor under Nordic conditions. Science of the Total Environment, 2021, 779, 146366.	3.9	32
21	Prospects for multi-omics in the microbial ecology of water engineering. Water Research, 2021, 205, 117608.	5.3	26
22	Elucidating performance failures in use of granular sludge for nutrient removal from domestic wastewater in a warm coastal climate region. Environmental Technology (United Kingdom), 2020, 41, 1896-1911.	1.2	22
23	Novel syntrophic bacteria in full-scale anaerobic digesters revealed by genome-centric metatranscriptomics. ISME Journal, 2020, 14, 906-918.	4.4	117
24	Metabolic Traits of <i>Candidatus</i> Accumulibacter clade IIF Strain SCELSE-1 Using Amino Acids As Carbon Sources for Enhanced Biological Phosphorus Removal. Environmental Science & Emp; Technology, 2020, 54, 2448-2458.	4.6	41
25	A refined set of rRNA-targeted oligonucleotide probes for in situ detection and quantification of ammonia-oxidizing bacteria. Water Research, 2020, 186, 116372.	5.3	19
26	Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant <i>Nitrospira</i> . ISME Journal, 2020, 14, 2967-2979.	4.4	52
27	Generation of Comprehensive Ecosystem-Specific Reference Databases with Species-Level Resolution by High-Throughput Full-Length $16\mathrm{S}$ rRNA Gene Sequencing and Automated Taxonomy Assignment (AutoTax). MBio, 2020, 11 , .	1.8	66
28	MiDAS 3: An ecosystem-specific reference database, taxonomy and knowledge platform for activated sludge and anaerobic digesters reveals species-level microbiome composition of activated sludge. Water Research, 2020, 182, 115955.	5.3	175
29	Candidatus Amarolinea and Candidatus Microthrix Are Mainly Responsible for Filamentous Bulking in Danish Municipal Wastewater Treatment Plants. Frontiers in Microbiology, 2020, 11, 1214.	1.5	37
30	"Candidatus Galacturonibacter soehngenii―Shows Acetogenic Catabolism of Galacturonic Acid but Lacks a Canonical Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase Complex. Frontiers in Microbiology, 2020, 11, 63.	1.5	6
31	Bacteria from the Genus <i>Arcobacter</i> Are Abundant in Effluent from Wastewater Treatment Plants. Applied and Environmental Microbiology, 2020, 86, .	1.4	65
32	On the evolution and physiology of cable bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19116-19125.	3.3	127
33	Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge <i>lanthella basta</i> . Environmental Microbiology, 2019, 21, 3831-3854.	1.8	50
34	New Training to Meet the Global Phosphorus Challenge. Environmental Science & Emp; Technology, 2019, 53, 8479-8481.	4.6	29
35	Editorial overview: Integrating biotechnology and microbial ecology in urban water infrastructure through a microbiome continuum viewpoint. Current Opinion in Biotechnology, 2019, 57, iii-vi.	3.3	6
36	"Candidatus Accumulibacter delftensisâ€. A clade IC novel polyphosphate-accumulating organism without denitrifying activity on nitrate. Water Research, 2019, 161, 136-151.	5.3	74

#	Article	IF	CITATIONS
37	Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 2019, 4, 1183-1195.	5.9	491
38	The Proteome of Tetrasphaera elongata is adapted to Changing Conditions in Wastewater Treatment Plants. Proteomes, 2019, 7, 16.	1.7	21
39	Proteogenomic Refinement of the <i>Neomegalonema perideroedes</i> ^T Genome Annotation. Proteomics, 2019, 19, e1800330.	1.3	4
40	Re-evaluating the microbiology of the enhanced biological phosphorus removal process. Current Opinion in Biotechnology, 2019, 57, 111-118.	3.3	180
41	Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH. ISME Journal, 2019, 13, 1933-1946.	4.4	130
42	Extraction and quantification of polyphosphates in activated sludge from waste water treatment plants by 31P NMR spectroscopy. Water Research, 2019, 157, 346-355.	5.3	32
43	Genomic insights into Candidatus Amarolinea aalborgensis gen. nov., sp. nov., associated with settleability problems in wastewater treatment plants. Systematic and Applied Microbiology, 2019, 42, 77-84.	1.2	58
44	The Composition and Implications of Polyphosphate-Metal in Enhanced Biological Phosphorus Removal Systems. Environmental Science & Environmental Scien	4.6	26
45	Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources. Water Research, 2019, 149, 496-510.	5.3	129
46	The morphology and metabolic potential of the Chloroflexi in full-scale activated sludge wastewater treatment plants. FEMS Microbiology Ecology, 2019, 95, .	1.3	100
47	Peatland <i>Acidobacteria </i> with a dissimilatory sulfur metabolism. ISME Journal, 2018, 12, 1729-1742.	4.4	168
48	Monitoring foaming potential in anaerobic digesters. Waste Management, 2018, 75, 280-288.	3.7	13
49	Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias. Nature Biotechnology, 2018, 36, 190-195.	9.4	165
50	Functional redundancy ensures performance robustness in 3-stage PHA-producing mixed cultures under variable feed operation. New Biotechnology, 2018, 40, 207-217.	2.4	28
51	Sludge fractionation as a method to study and predict fouling in MBR systems. Separation and Purification Technology, 2018, 194, 329-337.	3.9	30
52	Metagenomes from deep Baltic Sea sediments reveal how past and present environmental conditions determine microbial community composition. Marine Genomics, 2018, 37, 58-68.	0.4	52
53	In situ visualisation of the abundant Chloroflexi populations in full-scale anaerobic digesters and the fate of immigrating species. PLoS ONE, 2018, 13, e0206255.	1.1	37
54	The Sheaths of Methanospirillum Are Made of a New Type of Amyloid Protein. Frontiers in Microbiology, 2018, 9, 2729.	1.5	13

#	Article	IF	CITATIONS
55	Denitrification activity of polyphosphate accumulating organisms (PAOs) in full-scale wastewater treatment plants. Water Science and Technology, 2018, 78, 2449-2458.	1.2	17
56	Toward Better Understanding of EBPR Systems via Linking Raman-Based Phenotypic Profiling with Phylogenetic Diversity. Environmental Science & Environm	4.6	28
57	Genomic and in Situ Analyses Reveal the Micropruina spp. as Abundant Fermentative Glycogen Accumulating Organisms in Enhanced Biological Phosphorus Removal Systems. Frontiers in Microbiology, 2018, 9, 1004.	1.5	45
58	Characterization of the First " <i>Candidatus</i> Nitrotoga―Isolate Reveals Metabolic Versatility and Separate Evolution of Widespread Nitrite-Oxidizing Bacteria. MBio, 2018, 9, .	1.8	112
59	Novel prosthecate bacteria from the candidate phylum Acetothermia. ISME Journal, 2018, 12, 2225-2237.	4.4	75
60	Linking Raman-Based Phenotypic Profiling and Phylogenetic Diversity to Reveal EBPR Physiological Characteristics. Proceedings of the Water Environment Federation, 2018, 2018, 320-327.	0.0	0
61	Non-denitrifying polyphosphate accumulating organisms obviate requirement for anaerobic condition. Water Research, 2017, 111, 393-403.	5.3	35
62	Cultivation and characterization of <i>Candidatus</i> Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME Journal, 2017, 11, 1142-1157.	4.4	182
63	Metabolism and ecological niche of Tetrasphaera and Ca. Accumulibacter in enhanced biological phosphorus removal. Water Research, 2017, 122, 159-171.	5.3	124
64	Unified understanding of physico-chemical properties of activated sludge and fouling propensity. Water Research, 2017, 120, 117-132.	5.3	48
65	Long-term effects of sulphide on the enhanced biological removal of phosphorus: The symbiotic role of Thiothrix caldifontis. Water Research, 2017, 116, 53-64.	5.3	92
66	The role of inoculum and reactor configuration for microbial community composition and dynamics in mainstream partial nitritation anammox reactors. MicrobiologyOpen, 2017, 6, e00456.	1.2	32
67	Microbial biotechnology and circular economy in wastewater treatment. Microbial Biotechnology, 2017, 10, 1102-1105.	2.0	59
68	The impact of immigration on microbial community composition in full-scale anaerobic digesters. Scientific Reports, 2017, 7, 9343.	1.6	127
69	MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	124
70	Diversity of microbial carbohydrate-active enzymes in Danish anaerobic digesters fed with wastewater treatment sludge. Biotechnology for Biofuels, 2017, 10, 158.	6.2	35
71	Direct Identification of Functional Amyloid Proteins by Label-Free Quantitative Mass Spectrometry. Biomolecules, 2017, 7, 58.	1.8	13
72	A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems. Frontiers in Microbiology, 2017, 8, 718.	1.5	212

#	Article	IF	CITATIONS
73	Culture-Independent Analyses Reveal Novel Anaerolineaceae as Abundant Primary Fermenters in Anaerobic Digesters Treating Waste Activated Sludge. Frontiers in Microbiology, 2017, 8, 1134.	1.5	158
74	A new class of hybrid secretion system is employed in Pseudomonas amyloid biogenesis. Nature Communications, 2017, 8, 263.	5.8	56
75	Membrane filtration device for studying compression of fouling layers in membrane bioreactors. PLoS ONE, 2017, 12, e0181652.	1.1	6
76	Experimental Methods in Wastewater Treatment. Water Intelligence Online, 2016, 15, 9781780404752-9781780404752.	0.3	80
77	"Candidatus Propionivibrio aalborgensisâ€. A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants. Frontiers in Microbiology, 2016, 7, 1033.	1.5	97
78	Dynamics of the Fouling Layer Microbial Community in a Membrane Bioreactor. PLoS ONE, 2016, 11, e0158811.	1.1	42
79	Enhancing metaproteomics—The value of models and defined environmental microbial systems. Proteomics, 2016, 16, 783-798.	1.3	62
80	Epigallocatechin Gallate Remodels Overexpressed Functional Amyloids in Pseudomonas aeruginosa and Increases Biofilm Susceptibility to Antibiotic Treatment. Journal of Biological Chemistry, 2016, 291, 26540-26553.	1.6	75
81	Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters. ISME Journal, 2016, 10, 2352-2364.	4.4	62
82	Identification of active denitrifiers in fullâ€scale nutrient removal wastewater treatment systems. Environmental Microbiology, 2016, 18, 50-64.	1.8	226
83	Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge. FEMS Microbiology Ecology, 2016, 92, fiw078.	1.3	155
84	In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study. BMC Microbiology, 2016, 16, 80.	1.3	44
85	Comparing culture and molecular methods for the identification of microorganisms involved in necrotizing soft tissue infections. BMC Infectious Diseases, 2016, 16, 652.	1.3	41
86	Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions. Scientific Reports, 2016, 6, 25719.	1.6	61
87	Impact of sludge retention time on the fine composition of the microbial community and extracellular polymeric substances in a membrane bioreactor. Applied Microbiology and Biotechnology, 2016, 100, 8507-8521.	1.7	18
88	Proteomic dataset of the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 grown on hexachlorobenzene as electron acceptor. Data in Brief, 2016, 7, 253-256.	0.5	10
89	Genomic and <i>in situ</i> investigations of the novel uncultured Chloroflexi associated with 0092 morphotype filamentous bulking in activated sludge. ISME Journal, 2016, 10, 2223-2234.	4.4	88
90	Detection of Pathogenic Biofilms with Bacterial Amyloid Targeting Fluorescent Probe, CDy11. Journal of the American Chemical Society, 2016, 138, 402-407.	6.6	82

#	Article	IF	Citations
91	The activated sludge ecosystem contains a core community of abundant organisms. ISME Journal, 2016, 10, 11-20.	4.4	416
92	Back to Basics – The Influence of DNA Extraction and Primer Choice on Phylogenetic Analysis of Activated Sludge Communities. PLoS ONE, 2015, 10, e0132783.	1.1	437
93	Stabilization and De-Stabilization of (Membrane-)Proteins by Microbial Glycolipid and Lipopeptide Biosurfactants - in-vivo Relevance and Industrial Applications. Biophysical Journal, 2015, 108, 521a-522a.	0.2	0
94	MiDAS: the field guide to the microbes of activated sludge. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav062.	1.4	213
95	Labelâ€free quantification reveals major proteomic changes in <i>Pseudomonas putida</i> F1 during the exponential growth phase. Proteomics, 2015, 15, 3244-3252.	1.3	17
96	Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. Frontiers in Microbiology, 2015, 6, 1099.	1.5	133
97	Characterization of the In Situ Ecophysiology of Novel Phylotypes in Nutrient Removal Activated Sludge Treatment Plants. PLoS ONE, 2015, 10, e0136424.	1.1	8
98	Dewatering in biological wastewater treatment: A review. Water Research, 2015, 82, 14-24.	5.3	231
99	Complete Genome Sequence of the Bacterium Aalborg_AAW-1, Representing a Novel Family within the Candidate Phylum SR1. Genome Announcements, 2015, 3, .	0.8	5
100	The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids. Journal of Biological Chemistry, 2015, 290, 20590-20600.	1.6	36
101	Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Research, 2015, 75, 312-323.	5.3	276
102	Functional Amyloids Keep Quorum-sensing Molecules in Check. Journal of Biological Chemistry, 2015, 290, 6457-6469.	1.6	70
103	Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions. Applied and Environmental Microbiology, 2015, 81, 4809-4818.	1.4	58
104	Survival and activity of individual bioaugmentation strains. Bioresource Technology, 2015, 186, 192-199.	4.8	53
105	High quality draft genome sequence of Meganema perideroedes str. Gr1T and a proposal for its reclassification to the family Meganemaceae fam. nov Standards in Genomic Sciences, 2015, 10, 23.	1.5	15
106	Limited dissemination of the wastewater treatment plant core resistome. Nature Communications, 2015, 6, 8452.	5.8	173
107	Complete nitrification by a single microorganism. Nature, 2015, 528, 555-559.	13.7	1,336
108	Complete nitrification by Nitrospira bacteria. Nature, 2015, 528, 504-509.	13.7	1,878

#	Article	IF	CITATIONS
109	Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus <i>Nitrospira</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11371-11376.	3.3	439
110	Reâ€appraisal of the phylogeny and fluorescence <i>in situ</i> hybridization probes for the analysis of the <scp><i>C</i></scp> <i>ompetibacteraceae</i> in wastewater treatment systems. Environmental Microbiology Reports, 2015, 7, 166-174.	1.0	28
111	Major Proteomic Changes Associated with Amyloid-Induced Biofilm Formation in <i>Pseudomonas aeruginosa</i> PAO1. Journal of Proteome Research, 2015, 14, 72-81.	1.8	34
112	Complete Genome of Rhodococcus pyridinivorans SB3094, a Methyl-Ethyl-Ketone-Degrading Bacterium Used for Bioaugmentation. Genome Announcements, 2014, 2, .	0.8	17
113	Complete Genome Sequences of Pseudomonas monteilii SB3078 and SB3101, Two Benzene-, Toluene-, and Ethylbenzene-Degrading Bacteria Used for Bioaugmentation. Genome Announcements, 2014, 2, .	0.8	12
114	â€~ <i>Candidatus</i> Competibacter'-lineage genomes retrieved from metagenomes reveal functional metabolic diversity. ISME Journal, 2014, 8, 613-624.	4.4	203
115	Irreversible fouling of membrane bioreactors due to formation of a non-biofilm gel layer. Water Science and Technology, 2014, 69, 1641-1647.	1.2	5
116	Complete Genome Sequence of Actinobaculum schaalii Strain CCUG 27420. Genome Announcements, 2014, 2, .	0.8	9
117	Complete Genome Sequence of Pseudomonas sp. UK4, a Model Organism for Studies of Functional Amyloids in Pseudomonas. Genome Announcements, 2014, 2, .	0.8	20
118	Influence of shear on nitrification rates in a membrane bioreactor. Water Science and Technology, 2014, 69, 1705-1711.	1.2	1
119	Proteome profile and proteogenomics of the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 grown on hexachlorobenzene as electron acceptor. Journal of Proteomics, 2014, 98, 59-64.	1.2	49
120	Comparison of targeted peptide quantification assays for reductive dehalogenases by selective reaction monitoring (SRM) and precursor reaction monitoring (PRM). Analytical and Bioanalytical Chemistry, 2014, 406, 283-291.	1.9	41
121	Application of Ozone in Full-Scale to Reduce Filamentous Bulking Sludge at Öresundsverket WWTP. Ozone: Science and Engineering, 2014, 36, 238-243.	1.4	7
122	Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science, 2014, 345, 1052-1054.	6.0	166
123	Metaproteomics: Evaluation of protein extraction from activated sludge. Proteomics, 2014, 14, 2535-2539.	1.3	41
124	Low Temperature Partial Nitritation/Anammox in a Moving Bed Biofilm Reactor Treating Low Strength Wastewater. Environmental Science & Environmental Sc	4.6	319
125	Metabolic modelling of full-scale enhanced biological phosphorus removal sludge. Water Research, 2014, 66, 283-295.	5.3	41
126	The Family Saprospiraceae. , 2014, , 863-889.		91

#	Article	IF	Citations
127	Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal. Water Research, 2013, 47, 7032-7041.	5.3	84
128	Filtration properties of activated sludge in municipal MBR wastewater treatment plants are related to microbial community structure. Water Research, 2013, 47, 6719-6730.	5.3	25
129	Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants. Water Research, 2013, 47, 1529-1544.	5.3	153
130	The Microbial Database for Danish wastewater treatment plants with nutrient removal (MiDas-DK) – a tool for understanding activated sludge population dynamics and community stability. Water Science and Technology, 2013, 67, 2519-2526.	1,2	22
131	A metabolic model for members of the genus <i>Tetrasphaera</i> involved in enhanced biological phosphorus removal. ISME Journal, 2013, 7, 543-554.	4.4	188
132	Editorial: Microbial ecology. Water Research, 2013, 47, 6957.	5.3	0
133	Metagenomes obtained by $\hat{a} \in \hat{d}$ deep sequencing $\hat{a} \in \hat{d}$ what do they tell about the enhanced biological phosphorus removal communities?. Water Science and Technology, 2013, 68, 1959-1968.	1.2	14
134	Digging into the extracellular matrix of a complex microbial community using a combined metagenomic and metaproteomic approach. Water Science and Technology, 2013, 67, 1650-1656.	1.2	22
135	Bioinformatic progress and applications in metaproteogenomics for bridging the gap between genomic sequences and metabolic functions in microbial communities. Proteomics, 2013, 13, 2786-2804.	1.3	46
136	Metabolic model for the filamentous <i>Candidatus</i> Microthrix parvicella' based on genomic and metagenomic analyses. ISME Journal, 2013, 7, 1161-1172.	4.4	93
137	Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nature Biotechnology, 2013, 31, 533-538.	9.4	1,176
138	Link between microbial composition and carbon substrate-uptake preferences in a PHA-storing community. ISME Journal, 2013, 7, 1-12.	4.4	138
139	Comparison of nutrient-removing microbial communities in activated sludge from full-scale MBRs and conventional plants. Water Science and Technology, 2013, 68, 366-371.	1.2	31
140	High and stable substrate specificities of microorganisms in enhanced biological phosphorus removal plants. Environmental Microbiology, 2013, 15, 1821-1831.	1.8	36
141	Expression of Fap amyloids in <i><scp>P</scp>seudomonas aeruginosa</i> , <i><scp>P</scp>.Âfluorescens,</i> and <i><scp>P</scp>.Âputida</i> results in aggregation and increased biofilm formation. MicrobiologyOpen, 2013, 2, 365-382.	1.2	130
142	Evolutionary Insight into the Functional Amyloids of the Pseudomonads. PLoS ONE, 2013, 8, e76630.	1,1	56
143	Culture-Dependent and -Independent Investigations of Microbial Diversity on Urinary Catheters. Journal of Clinical Microbiology, 2012, 50, 3901-3908.	1.8	38
144	Microbial communities involved in enhanced biological phosphorus removal from wastewater—a model system in environmental biotechnology. Current Opinion in Biotechnology, 2012, 23, 452-459.	3.3	167

#	Article	IF	CITATIONS
145	Population dynamics of filamentous bacteria in Danish wastewater treatment plants with nutrient removal. Water Research, 2012, 46, 3781-3795.	5.3	110
146	A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME Journal, 2012, 6, 1094-1106.	4.4	218
147	Identification of glucose-fermenting bacteria in a full-scale enhanced biological phosphorus removal plant by stable isotope probing. Microbiology (United Kingdom), 2012, 158, 1818-1825.	0.7	53
148	Curli Functional Amyloid Systems Are Phylogenetically Widespread and Display Large Diversity in Operon and Protein Structure. PLoS ONE, 2012, 7, e51274.	1.1	124
149	Community structure of bacteria and fungi in aerosols of a pig confinement building. FEMS Microbiology Ecology, 2012, 80, 390-401.	1.3	35
150	The microorganisms in chronically infected end-stage and non-end-stage cystic fibrosis patients. FEMS Immunology and Medical Microbiology, 2012, 65, 236-244.	2.7	61
151	Bacterial diversity in suspected prosthetic joint infections: an exploratory study using 16S rRNA gene analysis. FEMS Immunology and Medical Microbiology, 2012, 65, 291-304.	2.7	35
152	â€~ <i>Candidatus</i> Halomonas phosphatis', a novel polyphosphateâ€accumulating organism in fullâ€scale enhanced biological phosphorus removal plants. Environmental Microbiology, 2012, 14, 2826-2837.	1.8	76
153	Improved Diagnosis of Biofilm Infections Using Various Molecular Methods. Springer Series on Biofilms, 2012, , 29-41.	0.0	1
154	Detection of microbial diversity in endocarditis using cultivation-independent molecular techniques. Scandinavian Journal of Infectious Diseases, 2011, 43, 857-869.	1.5	11
155	Fibrillation of the Major Curli Subunit CsgA under a Wide Range of Conditions Implies a Robust Design of Aggregation. Biochemistry, 2011, 50, 8281-8290.	1.2	89
156	Gravity drainage of activated sludge: New experimental method and considerations of settling velocity, specific cake resistance and cake compressibility. Water Research, 2011, 45, 1941-1950.	5.3	30
157	Sludge quality aspects of full-scale reed bed drainage. Water Research, 2011, 45, 6453-6460.	5.3	17
158	Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms. Environmental Microbiology, 2011, 13, 710-721.	1.8	138
159	High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera-related bacteria in activated sludge systems. FEMS Microbiology Ecology, 2011, 76, 256-267.	1.3	218
160	Eikelboom's morphotype 0803 in activated sludge belongs to the genus Caldilinea in the phylum Chloroflexi. FEMS Microbiology Ecology, 2011, 76, 451-462.	1.3	78
161	Bacterial community structure of a full-scale biofilter treating pig house exhaust air. Systematic and Applied Microbiology, 2011, 34, 344-352.	1.2	32
162	Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnology Advances, 2011, 29, 575-599.	6.0	108

#	Article	IF	CITATIONS
163	True Microbiota Involved in Chronic Lung Infection of Cystic Fibrosis Patients Found by Culturing and 16S rRNA Gene Analysis. Journal of Clinical Microbiology, 2011, 49, 4352-4355.	1.8	32
164	Thaumarchaeotes abundant in refinery nitrifying sludges express <i>amoA</i> but are not obligate autotrophic ammonia oxidizers. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16771-16776.	3.3	272
165	Butyric Acid- and Dimethyl Disulfide-Assimilating Microorganisms in a Biofilter Treating Air Emissions from a Livestock Facility. Applied and Environmental Microbiology, 2011, 77, 8595-8604.	1.4	27
166	Functional Bacterial Amyloids in Biofilms. Springer Series on Biofilms, 2011, , 41-62.	0.0	9
167	Full-scale control of Mycolata foam by FEX-120 addition. Water Science and Technology, 2010, 61, 2443-2450.	1.2	7
168	Ecophysiological Analysis of Microorganisms in Complex Microbial Systems by Combination of Fluorescence In Situ Hybridization with Extracellular Staining Techniques. Methods in Molecular Biology, 2010, 599, 117-128.	0.4	7
169	Long term/low dose formalin exposure to small-scale recirculation aquaculture systems. Aquacultural Engineering, 2010, 42, 1-7.	1.4	23
170	Gravitational drainage of compressible organic materials. AICHE Journal, 2010, 56, 3099-3108.	1.8	14
171	The bacteriology of chronic venous leg ulcer examined by culture-independent molecular methods. Wound Repair and Regeneration, 2010, 18, 38-49.	1.5	124
172	Functional amyloid in <i>Pseudomonas</i> i>. Molecular Microbiology, 2010, 77, 1009-1020.	1.2	256
173	Combined Microautoradiography and Fluorescence in situ Hybridization (MAR-FISH) for the Identification of Metabolically Active Microorganisms. , 2010, , 4093-4102.		7
174	Editorial. Water Research, 2010, 44, 4825.	5. 3	0
175	Combination of Fluorescence In Situ Hybridization with Staining Techniques for Cell Viability and Accumulation of PHA and polyP in Microorganisms in Complex Microbial Systems. Methods in Molecular Biology, 2010, 599, 103-116.	0.4	8
176	A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Research, 2010, 44, 5070-5088.	5.3	257
177	Biocorrosion and biofilm formation in a nutrient limited heating system subjected to alternating microaerophilic conditions. Biofouling, 2009, 25, 727-737.	0.8	6
178	Widespread Abundance of Functional Bacterial Amyloid in Mycolata and Other Gram-Positive Bacteria. Applied and Environmental Microbiology, 2009, 75, 4101-4110.	1.4	66
179	Isotope array analysis of <i>Rhodocyclales</i> uncovers functional redundancy and versatility in an activated sludge. ISME Journal, 2009, 3, 1349-1364.	4.4	86
180	Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiology Reviews, 2009, 33, 969-998.	3.9	185

#	Article	lF	CITATIONS
181	Peracetic acid degradation and effects on nitrification in recirculating aquaculture systems. Aquaculture, 2009, 296, 246-254.	1.7	104
182	We find them here, we find them there: Functional bacterial amyloid. Cellular and Molecular Life Sciences, 2008, 65, 910-927.	2.4	162
183	Ecophysiology of the Actinobacteria in activated sludge systems. Antonie Van Leeuwenhoek, 2008, 94, 21-33.	0.7	71
184	Use of cultivation-dependent and -independent techniques to assess contamination of central venous catheters: a pilot study. BMC Clinical Pathology, 2008, 8, 10.	1.8	25
185	In situ detection of starch-hydrolyzing microorganisms in activated sludge. FEMS Microbiology Ecology, 2008, 66, 462-471.	1.3	34
186	Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge. FEMS Microbiology Ecology, 2008, 66, 447-461.	1.3	78
187	Activity and identity of fermenting microorganisms in fullâ€scale biological nutrient removing wastewater treatment plants. Environmental Microbiology, 2008, 10, 2008-2019.	1.8	59
188	<i>In situ</i> detection of bacteria involved in cathodic depolarization and stainless steel surface corrosion using microautoradiography. Journal of Applied Microbiology, 2008, 105, 2231-2238.	1.4	5
189	Quantification of lipids and protein in thin biofilms by fluorescence staining. Biofouling, 2008, 24, 241-250.	0.8	15
190	Characterization of the loosely attached fraction of activated sludge bacteria. Water Research, 2008, 42, 843-854.	5.3	53
191	Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies. Water Research, 2008, 42, 1539-1546.	5.3	95
192	Quenching effects in the application of multi-channel fluorescence in activated sludge suspended solids. Water Research, 2008, 42, 2449-2456.	5.3	10
193	Adhesion characteristics of nitrifying bacteria in activated sludge. Water Research, 2008, 42, 2814-2826.	5.3	72
194	Identification and Ecophysiological Characterization of Epiphytic Protein-Hydrolyzing <i>Saprospiraceae</i> (" <i>Candidatus</i> Epiflobacter―spp.) in Activated Sludge. Applied and Environmental Microbiology, 2008, 74, 2229-2238.	1.4	172
195	Identity, abundance and ecophysiology of filamentous bacteria belonging to the Bacteroidetes present in activated sludge plants. Microbiology (United Kingdom), 2008, 154, 886-894.	0.7	86
196	Amyloid-Like Adhesins Produced by Floc-Forming and Filamentous Bacteria in Activated Sludge. Applied and Environmental Microbiology, 2008, 74, 1517-1526.	1.4	165
197	Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology (United Kingdom), 2007, 153, 4061-4073.	0.7	162
198	Abundance and ecophysiology of Defluviicoccus spp., glycogen-accumulating organisms in full-scale wastewater treatment processes. Microbiology (United Kingdom), 2007, 153, 178-185.	0.7	106

#	Article	IF	CITATIONS
199	Degradation of phthalate esters in an activated sludge wastewater treatment plant. Water Research, 2007, 41, 969-976.	5.3	225
200	Amyloid adhesins are abundant in natural biofilms. Environmental Microbiology, 2007, 9, 3077-3090.	1.8	291
201	Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiology Ecology, 2007, 59, 671-682.	1.3	210
202	Phylogenetic and functional diversity of bacteria in biofilms from metal surfaces of an alkaline district heating system. FEMS Microbiology Ecology, 2007, 61, 384-397.	1.3	28
203	In situ detection of protein-hydrolysing microorganisms in activated sludge. FEMS Microbiology Ecology, 2007, 60, 156-165.	1.3	74
204	Ecophysiology of abundant denitrifying bacteria in activated sludge. FEMS Microbiology Ecology, 2007, 60, 370-382.	1.3	178
205	Ecophysiology of mycolic acid-containing Actinobacteria (Mycolata) in activated sludge foams. FEMS Microbiology Ecology, 2007, 61, 174-184.	1.3	63
206	Evaluation of analytical methods for determining the distribution of biofilm and active bacteria in a commercial heating system. Biofouling, 2006, 22, 133-139.	0.8	33
207	Applicability of experience from laboratory reactors with biological phosphorus removal in full-scale plants. Water Science and Technology, 2006, 54, 267-275.	1.2	16
208	Floc-forming properties of polyphosphate accumulating organisms in activated sludge. Water Science and Technology, 2006, 54, 257-265.	1.2	16
209	Ecophysiology of a group of uncultured Gammaproteobacterial glycogen-accumulating organisms in full-scale enhanced biological phosphorus removal wastewater treatment plants. Environmental Microbiology, 2006, 8, 479-489.	1.8	100
210	Phylogeny, physiology and distribution of 'Candidatus Microthrix calida', a new Microthrix species isolated from industrial activated sludge wastewater treatment plants. Environmental Microbiology, 2006, 8, 1552-1563.	1.8	44
211	The in situ physiology of Skermania piniformis in foams in Australian activated sludge plants. Environmental Microbiology, 2006, 8, 1712-1720.	1.8	24
212	Detection of activity among uncultured Actinobacteria in a drinking water reservoir. FEMS Microbiology Ecology, 2006, 55, 432-438.	1.3	36
213	Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Current Opinion in Biotechnology, 2006, 17, 83-91.	3.3	166
214	Ecophysiology of different filamentous Alphaproteobacteria in industrial wastewater treatment plants. Microbiology (United Kingdom), 2006, 152, 3003-3012.	0.7	69
215	Identity, abundance and physiology of Aquaspirillum-related filamentous bacteria in activated sludge. Water Science and Technology, 2006, 54, 237-245.	1.2	33
216	Meganema perideroedes gen. nov., sp. nov., a filamentous alphaproteobacterium from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1865-1868.	0.8	39

#	Article	IF	CITATIONS
217	Cohn'sCrenothrixis a filamentous methane oxidizer with an unusual methane monooxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2363-2367.	3.3	229
218	Ecophysiology of the filamentous Alphaproteobacterium Meganema perideroedes in activated sludge. FEMS Microbiology Ecology, 2005, 54, 111-112.	1.3	78
219	In situ substrate conversion and assimilation by nitrifying bacteria in a model biofilm. Environmental Microbiology, 2005, 7, 1392-1404.	1.8	33
220	The In Situ Physiology of Pine Tree Like Organisms (PTLO) in Activated Sludge Foams. Clean - Soil, Air, Water, 2005, 33, 203-209.	0.8	24
221	Control ofMicrothrix parvicella in Activated Sludge Plants by Dosage of Polyaluminium Salts: Possible Mechanisms. Clean - Soil, Air, Water, 2005, 33, 255-261.	0.8	35
222	"Microthrix parvicellaâ€; a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. FEMS Microbiology Reviews, 2005, 29, 49-64.	3.9	176
223	Isotope Labeling and Microautoradiography of Active Heterotrophic Bacteria on the Basis of Assimilation of 14 CO 2. Applied and Environmental Microbiology, 2005, 71, 646-655.	1.4	91
224	Identity and Ecophysiology of Uncultured Actinobacterial Polyphosphate-Accumulating Organisms in Full-Scale Enhanced Biological Phosphorus Removal Plants. Applied and Environmental Microbiology, 2005, 71, 4076-4085.	1.4	246
225	Microbial diversity in biofilms from corroding heating systems. Biofouling, 2005, 21, 19-29.	0.8	23
226	Advances in Microscopy: Microautoradiography of Single Cells. Methods in Enzymology, 2005, 397, 237-256.	0.4	42
227	Microautoradiographic Study of Rhodocyclus -Related Polyphosphate-Accumulating Bacteria in Full-Scale Enhanced Biological Phosphorus Removal Plants. Applied and Environmental Microbiology, 2004, 70, 5383-5390.	1.4	174
228	Effects of Chlorination on the Adhesion Strength and Deflocculation of Activated Sludge Flocs. Water Environment Research, 2004, 76, 327-333.	1.3	6
229	Micromanipulation and further identification of FISH-labelled microcolonies of a dominant denitrifying bacterium in activated sludge. Environmental Microbiology, 2004, 6, 470-479.	1.8	55
230	A conspicuous H2S-oxidizing microbial mat from a high-latitude Arctic fjord (Young Sound, NE) Tj ETQq0 0 0 rgBT	/8.verlock	10 Tf 50 22
231	Potential of biocorrosion in Danish district heatings sytems. Materials and Corrosion - Werkstoffe Und Korrosion, 2004, 55, 543-547.	0.8	5
232	Variations in microcolony strength of probe-defined bacteria in activated sludge flocs. FEMS Microbiology Ecology, 2004, 50, 123-132.	1.3	47
233	Flocculation of activated sludge flocs by stimulation of the aerobic biological activity. Water Research, 2004, 38, 3909-3919.	5.3	34
234	Bacterial composition of activated sludge-importance for floc and sludge properties. Water Science and Technology, 2004, 49, 51-8.	1.2	11

#	Article	IF	Citations
235	Use of Microautoradiography to Study in situ Physiology of Bacteria in Biofilms. Reviews in Environmental Science and Biotechnology, 2003, 2, 261-268.	3.9	8
236	Long-term Population Dynamics and in situ Physiology in Activated Sludge Systems with Enhanced Biological Phosphorus Removal Operated with and without Nitrogen Removal. Systematic and Applied Microbiology, 2003, 26, 211-227.	1.2	50
237	Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environmental Microbiology, 2003, 5, 202-211.	1.8	115
238	Characterization of activated sludge flocs by confocal laser scanning microscopy and image analysis. Water Research, 2003, 37, 2043-2052.	5.3	88
239	Lipase and protease extraction from activated sludge. Water Research, 2003, 37, 3652-3657.	5.3	124
240	The Isotope Array, a New Tool That Employs Substrate-Mediated Labeling of rRNA for Determination of Microbial Community Structure and Function. Applied and Environmental Microbiology, 2003, 69, 6875-6887.	1.4	223
241	Evaluation of the Redox Dye 5-Cyano-2,3-Tolyl-Tetrazolium Chloride for Activity Studies by Simultaneous Use of Microautoradiography and Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 2003, 69, 641-643.	1.4	52
242	Abundance and Phylogenetic Affiliation of Iron Reducers in Activated Sludge as Assessed by Fluorescence In Situ Hybridization and Microautoradiography. Applied and Environmental Microbiology, 2002, 68, 4629-4636.	1.4	97
243	Phylogenetic Identification and Substrate Uptake Patterns of Sulfate-Reducing Bacteria Inhabiting an Oxic-Anoxic Sewer Biofilm Determined by Combining Microautoradiography and Fluorescent In Situ Hybridization. Applied and Environmental Microbiology, 2002, 68, 356-364.	1.4	112
244	Enumeration of acetate-consuming bacteria by microautoradiography under oxygen and nitrate respiring conditions in activated sludge. Water Research, 2002, 36, 421-428.	5.3	53
245	In situ studies of the phylogeny and physiology of filamentous bacteria with attached growth. Environmental Microbiology, 2002, 4, 383-391.	1.8	53
246	Use of phosphorus release batch tests for modelling an EBPR pilot plant. Water Science and Technology, 2002, 45, 99-106.	1.2	1
247	Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants. Water Science and Technology, 2002, 46, 73-80.	1.2	21
248	Comparison of methods for determination of microbial biomass in wastewater. Water Research, 2001, 35, 1649-1658.	5.3	49
249	In Situ Characterization of Nitrospira -Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants. Applied and Environmental Microbiology, 2001, 67, 5273-5284.	1.4	718
250	Remember the water - a comment on EPS colligative properties. Water Science and Technology, 2001, 43, 17-23.	1.2	73
251	Transformation of lipids in activated sludge. Water Science and Technology, 2001, 43, 165-172.	1.2	33
252	Quantification of the bond energy of bacteria attached to activated sludge floc surfaces. Water Science and Technology, 2001, 43, 67-75.	1.2	33

#	Article	IF	Citations
253	In situ detection of cell surface hydrophobicity of probe-defined bacteria in activated sludge. Water Science and Technology, 2001, 43, 97-103.	1.2	31
254	Monitoring and troubleshooting of non-filamentous settling and dewatering problems in an industrial activated sludge treatment plant. Water Science and Technology, 2001, 44, 155-162.	1.2	10
255	In situ detection of cell surface hydrophobicity of probe-defined bacteria in activated sludge. Water Science and Technology, 2001, 43, 97-103.	1.2	7
256	Studies on the in situ physiology of Thiothrix spp. present in activated sludge. Environmental Microbiology, 2000, 2, 389-398.	1.8	125
257	Influence of microbial activity on the stability of activated sludge flocs. Colloids and Surfaces B: Biointerfaces, 2000, 18, 145-156.	2.5	99
258	Effect of Biomineralized Manganese on the Corrosion Behavior of C1008 Mild Steel. Corrosion, 2000, 56, 80-89.	0.5	33
259	Anaerobic deflocculation and aerobic reflocculation of activated sludge. Water Research, 2000, 34, 3933-3942.	5.3	111
260	Growth of Microthrix parvicella in nutrient removal activated sludge plants: studies of in situ physiology. Water Research, 2000, 34, 1559-1569.	5.3	85
261	The influence of dietary oxolinic acid on fluidised bed biofilter performance in a recirculation system for rainbow trout (Oncorhynchus mykiss). Aquaculture, 2000, 183, 255-268.	1.7	9
262	Use of microautoradiography and fluorescent in situ hybridization for characterization of microbial activity in activated sludge. Water Science and Technology, 1999, 39, 1-9.	1.2	22
263	Combination of Fluorescent In Situ Hybridization and Microautoradiography—a New Tool for Structure-Function Analyses in Microbial Ecology. Applied and Environmental Microbiology, 1999, 65, 1289-1297.	1.4	635
264	Composition ofpseudomonas putidabiofilms: Accumulation of protein in the biofilm matrix. Biofouling, 1999, 14, 49-57.	0.8	62
265	Extraction of EPS. , 1999, , 49-72.		118
266	Performance characteristics of fluidised bed biofilters in a novel laboratory-scale recirculation system for rainbow trout: nitrification rates, oxygen consumption and sludge collection. Aquacultural Engineering, 1998, 18, 265-276.	1.4	24
267	Disintegration of activated sludge flocs in presence of sulfide. Water Research, 1998, 32, 313-320.	5.3	129
268	The effect of alkaline pH conditions on a sulphate reducing consortium from a Danish district heating plant. Biofouling, 1998, 12, 273-286.	0.8	16
269	Microbial Nitrate-Dependent Oxidation of Ferrous Iron in Activated Sludge. Environmental Science & Environmental Science	4.6	104
270	In situ characterization of substrate uptake by Microthrix parvicella using microautoradiography. Water Science and Technology, 1998, 37, 19-26.	1.2	23

#	Article	IF	Citations
271	Influence of oxygen limitation on the cell surface properties of bacteria from activated sludge. Water Science and Technology, 1998, 37, 349-352.	1.2	12
272	Cell biomass and exopolymer composition in sewer biofilms. Water Science and Technology, 1998, 37, 17-24.	1.2	96
273	A process and model concept for microbial wastewater transformations in gravity sewers. Water Science and Technology, 1998, 37, 233-241.	1.2	138
274	Microbial Fe(II)-oxidation by nitrate in activated sludge. Water Science and Technology, 1998, 37, 403-406.	1.2	2
275	Variability of type 021N in activated sludge as determined by in situ substrate uptake pattern and in situ hybridization with fluorescent rRNA targeted probes. Water Science and Technology, 1998, 37, 423-430.	1.2	16
276	Desorption of organic macromolecules from activated sludge: Effect of ionic composition. Water Research, 1997, 31, 1665-1672.	5.3	132
277	Acetate removal in sewer biofilms under aerobic conditions. Water Research, 1997, 31, 2727-2736.	5.3	27
278	Conceptual model for production and composition of exopolymers in biofilms. Water Science and Technology, 1997, 36, 11-19.	1.2	197
279	Conceptual model for production and composition of exopolymers in biofilms. Water Science and Technology, 1997, 36, 11.	1.2	148
280	Microbial Fe(III) Reduction in Activated Sludge. Systematic and Applied Microbiology, 1997, 20, 645-651.	1.2	28
281	Role of Hydrophobicity in Adhesion of the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga to Amorphous Fe(III) Oxide. Applied and Environmental Microbiology, 1997, 63, 3837-3843.	1.4	87
282	Application of microautoradiography to the study of substrate uptake by filamentous microorganisms in activated sludge. Applied and Environmental Microbiology, 1997, 63, 3662-3668.	1.4	87
283	Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage. Applied Microbiology and Biotechnology, 1996, 44, 823-830.	1.7	136
284	Iron reduction in activated sludge measured with different extraction techniques. Water Research, 1996, 30, 551-558.	5.3	83
285	Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research, 1996, 30, 1749-1758.	5.3	2,040
286	Adsorption of ammonium to activated sludge. Water Research, 1996, 30, 762-764.	5.3	59
287	Effects of colloidal stability on clarification and dewatering of activated sludge. Water Science and Technology, 1996, 34, 449-457.	1.2	27
288	Effects of colloidal stability on clarification and dewatering of activated sludge. Water Science and Technology, 1996, 34, 449.	1.2	32

#	Article	IF	Citations
289	Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage. Applied Microbiology and Biotechnology, 1996, 44, 823-830.	1.7	8
290	Deflocculation of Activated Sludge by the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga BrY. Applied and Environmental Microbiology, 1996, 62, 1487-1490.	1.4	59
291	The significance of microbial Fe(III) reduction in the activated sludge process. Water Science and Technology, 1996, 34, 129-136.	1.2	29
292	Influence of oxygen on biofilm growth and potential sulfate reduction in gravity sewer biofilm. Water Science and Technology, 1995, 31, 159-167.	1.2	15
293	Volatile fatty acids and sulfide in pressure mains. Water Science and Technology, 1995, 31, 169-179.	1.2	33
294	Extraction of extracellular polymeric substances (EPS) from biofilms using a cation exchange resin. Water Science and Technology, 1995, 32, 157-164.	1.2	74
295	Rate and stoichiometry of microbial sulfate reduction by <i>Desulfovibrio desulfuricans</i> in biofilms. Biofouling, 1995, 9, 63-83.	0.8	13
296	Transformation of organic matter in a gravity sewer. Water Environment Research, 1995, 67, 181-188.	1.3	63
297	Role of sulfateâ€reducing bacteria in corrosion of mild steel: A review. Biofouling, 1995, 8, 165-194.	0.8	316
298	Enzymatic activity in the activated-sludge floc matrix. Applied Microbiology and Biotechnology, 1995, 43, 755-761.	1.7	917
299	Enzymatic activity in the activated-sludge floc matrix. Applied Microbiology and Biotechnology, 1995, 43, 755-761.	1.7	987
300	Solids: report of the discussion session. Water Science and Technology, 1995, 32, 273-275.	1.2	1
301	A Comparative Study of Biopolymers from a Conventional and an Advanced Activated Sludge Treatment Plant. Water Science and Technology, 1994, 29, 137-141.	1.2	35
302	Settling Characteristics of Activated Sludge in Danish Treatment Plants with Biological Nutrient Removal. Water Science and Technology, 1994, 29, 157-165.	1.2	170
303	Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Research, 1994, 28, 251-262.	5.3	516
304	Observations on dewaterability and physical, chemical and microbiological changes in anaerobically stored activated sludge from a nutrient removal plant. Water Research, 1994, 28, 417-425.	5.3	58
305	Corrosion of mild steel underneath aerobic biofilms containing sulfateâ€reducing bacteria part II: At high dissolved oxygen concentration. Biofouling, 1993, 7, 217-239.	0.8	67
306	Corrosion of mild steel in an alternating oxic and anoxic biofilm system. Biofouling, 1993, 7, 267-284.	0.8	50

#	Article	IF	CITATIONS
307	On the stability of activated sludge flocs with implications to dewatering. Water Research, 1992, 26, 1597-1604.	5.3	271
308	Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: Limiting nutrients and sulfide concentration. Biotechnology and Bioengineering, 1992, 40, 725-734.	1.7	114
309	Importance of unattached bacteria and bacteria attached to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer. Applied and Environmental Microbiology, 1992, 58, 3020-3026.	1.4	119
310	Sulfur Sources for Hydrogen Sulfide Production in Biofilms from Sewer Systems. Water Science and Technology, 1991, 23, 1265-1274.	1.2	10
311	Hydrogen Sulphide Control in Municipal Sewers. , 1988, , 239-247.		14
312	Biofilm Dynamics and Kinetics during High-Rate Sulfate Reduction under Anaerobic Conditions. Applied and Environmental Microbiology, 1987, 53, 27-32.	1.4	93
313	Oxidation of Sulfide and Thiosulfate and Storage of Sulfur Granules in Thiothrix from Activated Sludge. Water Science and Technology, 1985, 17, 167-181.	1.2	16
314	Diversity and Ecophysiology of the Genus OLB8 and Other Abundant Uncultured Saprospiraceae Genera in Global Wastewater Treatment Systems. Frontiers in Microbiology, 0, 13, .	1.5	32