List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5459267/publications.pdf Version: 2024-02-01

		10070	9118
259	24,543	75	149
papers	citations	h-index	g-index
272	272	272	32285
all docs	docs citations	times ranked	citing authors

LIAN VANC

#	Article	IF	CITATIONS
1	Multi-dimensional hybrid flexible films promote uniform lithium deposition and mitigate volume change as lithium metal anodes. Journal of Energy Chemistry, 2022, 65, 583-591.	7.1	6
2	Boosting Fast and Stable Alkali Metal Ion Storage by Synergistic Engineering of Oxygen Vacancy and Amorphous Structure. Advanced Functional Materials, 2022, 32, 2106751.	7.8	38
3	Simultaneously in-situ fabrication of lithium fluoride and sulfide enriched artificial solid electrolyte interface facilitates high stable lithium metal anode. Chemical Engineering Journal, 2022, 433, 133193.	6.6	14
4	Nitrogen and fluorine co-doped TiO2/carbon microspheres for advanced anodes in sodium-ion batteries: High volumetric capacity, superior power density and large areal capacity. Journal of Energy Chemistry, 2022, 68, 104-112.	7.1	38
5	Understanding electrolyte salt chemistry for advanced potassium storage performances of transitionâ€metal sulfides. , 2022, 4, 332-345.		10
6	Construction of Fluorinated Amino Acid Derivatives via Cobalt-Catalyzed Oxidative Difunctionalization of Cyclic Ethers. Organic Letters, 2022, 24, 608-612.	2.4	6
7	Unravelling binder chemistry in sodium/potassium ion batteries for superior electrochemical performances. Journal of Materials Chemistry A, 2022, 10, 4060-4067.	5.2	25
8	Site-Selective Adsorption on ZnF ₂ /Ag Coated Zn for Advanced Aqueous Zinc–Metal Batteries at Low Temperature. Nano Letters, 2022, 22, 1750-1758.	4.5	95
9	Bimetallic Bi–Sn microspheres as high initial coulombic efficiency and long lifespan anodes for sodium-ion batteries. Chemical Communications, 2022, 58, 5140-5143.	2.2	15
10	Intercalation of organics into layered structures enables superior interface compatibility and fast charge diffusion for dendrite-free Zn anodes. Energy and Environmental Science, 2022, 15, 1682-1693.	15.6	105
11	Mesocarbon Microbeads Boost the Electrochemical Performances of LiFePO ₄ Li ₄ Ti ₅ O ₁₂ through Anion Intercalation. ChemSusChem, 2022, 15, .	3.6	7
12	Suppressed Dissolution and Enhanced Desolvation in Core–Shell MoO ₃ @TiO ₂ Nanorods as a Highâ€Rate and Longâ€Life Anode Material for Proton Batteries. Advanced Energy Materials, 2022, 12, .	10.2	44
13	Zn-doping Effects of Na-rich Na3+xV2-xZnx(PO4)3/C cathodes for Na-Ion Batteries: Lattice distortion induced by doping site and enhanced electrochemical performance. Journal of Colloid and Interface Science, 2022, 616, 246-252.	5.0	7
14	Morphologically and chemically regulated 3D carbon for Dendrite-free lithium metal anodes by a plasma processing. Journal of Colloid and Interface Science, 2022, 619, 198-206.	5.0	7
15	Intermolecular diastereoselective annulation of azaarenes into fused N-heterocycles by Ru(II) reductive catalysis. Nature Communications, 2022, 13, 2393.	5.8	17
16	Forming Solid-Electrolyte Interphases with Rich Grain Boundaries on 3D Lithiophilic Skeleton for Low-Temperature Lithium Metal Batteries. Energy Storage Materials, 2022, 49, 454-462.	9.5	19
17	Tin nanoparticle in-situ decorated on nitrogen-deficient carbon nitride with excellent sodium storage performance. Journal of Colloid and Interface Science, 2022, 624, 40-50.	5.0	9
18	Improved Na storage and Coulombic efficiency in TiP2O7@C microflowers for sodium ion batteries. Nano Research, 2021, 14, 139-147.	5.8	18

#	Article	IF	CITATIONS
19	Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate anode materials for sodium-ion batteries. Electrochimica Acta, 2021, 365, 137379.	2.6	26
20	Ti ₃ C ₂ T _x with a hydroxyl-rich surface for metal sulfides as high performance electrode materials for sodium/lithium storage. Journal of Materials Chemistry A, 2021, 9, 14013-14024.	5.2	32
21	Rational design and controllable synthesis of polymer aerogel-based single-atom catalysts with high loading. Materials Advances, 2021, 2, 6885-6900.	2.6	3
22	Removing Pb ²⁺ with a pectin-rich fiber from sisal waste. Food and Function, 2021, 12, 2418-2427.	2.1	7
23	Voltage-Modulated Structure Stress for Enhanced Electrochemcial Performances: The Case of μ-Sn in Sodium-Ion Batteries. Nano Letters, 2021, 21, 3588-3595.	4.5	38
24	Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries. Nano Letters, 2021, 21, 4757-4764.	4.5	44
25	Layered Structure Na ₂ Ti ₃ O ₇ as a Promising Anode Material for Sodium″on Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2000095.	2.8	7
26	N, P-codoped graphene supported few-layered MoS2 as a long-life and high-rate anode materials for potassium-ion storage. Nano Research, 2021, 14, 3523-3530.	5.8	41
27	SiOx embedded in N-doped carbon nanoslices: A scalable synthesis of high-performance anode material for lithium-ion batteries. Carbon, 2021, 178, 202-210.	5.4	33
28	<i>syn</i> -Selective Construction of Fused Heterocycles by Catalytic Reductive Tandem Functionalization of N-Heteroarenes. ACS Catalysis, 2021, 11, 9271-9278.	5.5	32
29	Plasma-Assisted Synthesis of Defect-Rich O and N Codoped Carbon Nanofibers Loaded with Manganese Oxides as an Efficient Oxygen Reduction Electrocatalyst for Aluminum–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 37123-37132.	4.0	17
30	Revisit Electrolyte Chemistry of Hard Carbon in Ether for Na Storage. Jacs Au, 2021, 1, 1208-1216.	3.6	28
31	Promises and Challenges of <scp>Snâ€Based</scp> Anodes for <scp>Sodiumâ€lon</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2931-2942.	2.6	11
32	Revisit sodium-storage mechanism of metal selenides in ether-based electrolytes: Electrochemically-driven Cu permeation to the formation of Cu2-xSe. Energy Storage Materials, 2021, 40, 189-196.	9.5	33
33	Bimetallic composite induced ultra-stable solid electrolyte interphase for dendrite-free lithium metal anode. Journal of Colloid and Interface Science, 2021, 599, 819-827.	5.0	15
34	Solid-state batteries designed with high ion conductive composite polymer electrolyte and silicon anode. Energy Storage Materials, 2021, 43, 165-171.	9.5	35
35	High loading of NiFe active sites on a melamine formaldehyde carbon-based aerogel towards efficient bi-functional electrocatalysis for water splitting. Sustainable Energy and Fuels, 2021, 5, 4973-4980.	2.5	4
36	Microemulsion synthesis of ZnMn2O4/Mn3O4 sub-microrods for Li-ion batteries and their conversion reaction mechanism. Transactions of Nonferrous Metals Society of China, 2021, 31, 265-276.	1.7	14

#	Article	IF	CITATIONS
37	Crystalline Sb or Bi in amorphous Ti-based oxides as anode materials for sodium storage. Chemical Engineering Journal, 2020, 380, 122624.	6.6	22
38	Electronic structure modulation of bifunctional oxygen catalysts for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 1229-1237.	5.2	26
39	Synergistic effect of interface layer and mechanical pressure for advanced Li metal anodes. Energy Storage Materials, 2020, 26, 112-118.	9.5	25
40	Pressure-tuned and surface-oxidized copper foams for dendrite-free Li metal anodes. Materials Today Energy, 2020, 15, 100367.	2.5	13
41	Few-layer WSe2 lateral homo- and hetero-junctions with superior optoelectronic performance by laser manufacturing. Science China Technological Sciences, 2020, 63, 1531-1537.	2.0	5
42	Simplified Synthesis of Biomassâ€Derived Si/C Composites as Stable Anode Materials for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2020, 26, 10544-10549.	1.7	22
43	Lanthanum-Doped Strontium Stannate for Efficient Electron-Transport Layers in Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 6889-6896.	2.5	11
44	Catalytic Conversion of N-Heteroaromatics to Functionalized Arylamines by Merging Hydrogen Transfer and Selective Coupling. ACS Catalysis, 2020, 10, 5243-5249.	5.5	40
45	Hydrogen Transfer-Mediated Multicomponent Reaction for Direct Synthesis of Quinazolines by a Naphthyridine-Based Iridium Catalyst. IScience, 2020, 23, 101003.	1.9	17
46	Chlorine-doped SnO ₂ hydrophobic surfaces for large grain perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 11638-11646.	2.7	40
47	Polypyrrole-controlled plating/stripping for advanced zinc metal anodes. Materials Today Energy, 2020, 17, 100443.	2.5	40
48	Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Research, 2020, 13, 691-700.	5.8	93
49	Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Research, 2020, 13, 802-809.	5.8	61
50	Stable Lithium Deposition Enabled by an Acid-Treated g-C ₃ N ₄ Interface Layer for a Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 11265-11272.	4.0	24
51	ZIF-Derived Cobalt-Containing N-Doped Carbon-Coated SiO _{<i>x</i>} Nanoparticles for Superior Lithium Storage. ACS Applied Materials & Interfaces, 2020, 12, 7206-7211.	4.0	43
52	Pomegranate-Structured ZnMn2O4 Microspheres for Long Cycle Life Lithium Ion Anode and Elucidation of Its Conversion Mechanism. Journal of the Electrochemical Society, 2020, 167, 060507.	1.3	3
53	Controllable morphologies and electrochemical performances of self-assembled nano-honeycomb WS2 anodes modified by graphene doping for lithium and sodium ion batteries. Carbon, 2019, 142, 697-706.	5.4	76
54	Potassium Ion Storage: Direct Structure–Performance Comparison of Allâ€Carbon Potassium and Sodium Ion Capacitors (Adv. Sci. 12/2019). Advanced Science, 2019, 6, 1970075.	5.6	3

#	Article	IF	CITATIONS
55	Cellulose-Hydrogel-Derived Self-Activated Carbon/SnO ₂ Nanocomposites for High-Performance Lithium Storage. ACS Applied Energy Materials, 2019, 2, 5171-5182.	2.5	29
56	Polyanions Enhance Conversion Reactions for Lithium/Sodiumâ€lon Batteries: The Case of SbVO ₄ Nanoparticles on Reduced Graphene Oxide. Small Methods, 2019, 3, 1900231.	4.6	31
57	Uniform nucleation of sodium in 3D carbon nanotube framework via oxygen doping for long-life and efficient Na metal anodes. Energy Storage Materials, 2019, 23, 137-143.	9.5	72
58	Direct Structure–Performance Comparison of All arbon Potassium and Sodium Ion Capacitors. Advanced Science, 2019, 6, 1802272.	5.6	98
59	MOF-derived manganese monoxide nanosheet-assembled microflowers for enhanced lithium-ion storage. Nanoscale, 2019, 11, 10763-10773.	2.8	29
60	Preparation of Porous TiO ₂ from an Iso-Polyoxotitanate Cluster for Rechargeable Sodium-Ion Batteries with High Performance. Journal of Physical Chemistry C, 2019, 123, 7025-7032.	1.5	9
61	Spatial separation of lithiophilic surface and superior conductivity for advanced Li metal anode: the case of acetylene black and N-doped carbon spheres. Journal of Materials Chemistry A, 2019, 7, 8765-8770.	5.2	25
62	2D MOF induced accessible and exclusive Co single sites for an efficient <i>O</i> -silylation of alcohols with silanes. Chemical Communications, 2019, 55, 6563-6566.	2.2	34
63	Li3VO4 nanoparticles in N-doped carbon with porous structure as an advanced anode material for lithium-ion batteries. Chemical Engineering Journal, 2019, 370, 606-613.	6.6	54
64	Mesoporous Cu2-xSe nanocrystals as an ultrahigh-rate and long-lifespan anode material for sodium-ion batteries. Energy Storage Materials, 2019, 22, 275-283.	9.5	88
65	Investigation of ordered mesoporous carbon@MnO core–shell nanospheres as anode material for lithium-ion batteries. Journal of Materials Science, 2019, 54, 6461-6470.	1.7	16
66	Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na ion batteries. Journal of Colloid and Interface Science, 2019, 538, 267-276.	5.0	63
67	Uniform Co ₃ V ₂ O ₈ microspheres <i>via</i> controllable assembly for high-performance lithium-ion battery anodes. New Journal of Chemistry, 2018, 42, 4881-4886.	1.4	9
68	Pt/Coâ€Au Dumbbellâ€Like Nanorods for Enhanced Electrocatalytic Performance of Formic Acid Electrooxidation. Particle and Particle Systems Characterization, 2018, 35, 1700379.	1.2	1
69	TiO2 on MoSe2 nanosheets as an advanced photocatalyst for hydrogen evolution in visible light. Catalysis Communications, 2018, 106, 60-63.	1.6	23
70	Solid-Solution Anion-Enhanced Electrochemical Performances of Metal Sulfides/Selenides for Sodium-Ion Capacitors: The Case of FeS _{2–<i>x</i>} Se _{<i>x</i>} . ACS Applied Materials & Interfaces, 2018, 10, 10945-10954.	4.0	91
71	Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors. Journal of Power Sources, 2018, 384, 240-248.	4.0	37
72	A single palladium site catalyst as a bridge for converting homogeneous to heterogeneous in dimerization of terminal aryl acetylenes. Materials Chemistry Frontiers, 2018, 2, 1317-1322.	3.2	23

#	Article	IF	CITATIONS
73	Plasmon-enhanced electrocatalytic hydrogen/oxygen evolution by Pt/Fe–Au nanorods. Journal of Materials Chemistry A, 2018, 6, 7364-7369.	5.2	44
74	Excellent microwave absorption of lead halide perovskites with high stability. Journal of Materials Chemistry C, 2018, 6, 4201-4207.	2.7	28
75	Layered-Structure SbPO ₄ /Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion Batteries. ACS Nano, 2018, 12, 12869-12878.	7.3	87
76	Site-Specific Oxidative C–H Chalcogenation of (Hetero)Aryl-Fused Cyclic Amines Enabled by Nanocobalt Oxides. Organic Letters, 2018, 20, 6554-6558.	2.4	22
77	Long Cycle Life All-Solid-State Sodium Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 39645-39650.	4.0	44
78	Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Materials Today Energy, 2018, 10, 241-248.	2.5	107
79	Inâ€Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surfaceâ€Bound Nickel Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2018, 57, 14095-14100.	7.2	310
80	SnP ₂ O ₇ Covered Carbon Nanosheets as a Longâ€Life and Highâ€Rate Anode Material for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1804672.	7.8	84
81	Inâ€Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surfaceâ€Bound Nickel Singleâ€Atom Catalysts. Angewandte Chemie, 2018, 130, 14291-14296.	1.6	41
82	Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nature Catalysis, 2018, 1, 460-468.	16.1	247
83	Few-atomic-layered hollow nanospheres constructed from alternate intercalation of carbon and MoS2 monolayers for sodium and lithium storage. Nano Energy, 2018, 51, 546-555.	8.2	98
84	Anchoring and space-confinement effects to form ultrafine Ru nanoclusters for efficient hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 13859-13866.	5.2	55
85	Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode. Journal of Materials Chemistry A, 2018, 6, 15859-15867.	5.2	90
86	Truncated cobalt hexacyanoferrate nanocubes threaded by carbon nanotubes as a high-capacity and high-rate cathode material for dual-ion rechargable aqueous batteries. Journal of Power Sources, 2018, 399, 1-7.	4.0	35
87	Influence of PEG Stoichiometry on Structure-Tuned Formation of Self-Assembled Submicron Nickel Particles. Materials, 2018, 11, 222.	1.3	1
88	Comprehensive New Insights and Perspectives into Tiâ€Based Anodes for Nextâ€Generation Alkaline Metal (Na ⁺ , K ⁺) Ion Batteries. Advanced Energy Materials, 2018, 8, 1801888.	10.2	142
89	Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. Angewandte Chemie, 2018, 130, 9639-9644.	1.6	31
90	Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. Angewandte Chemie - International Edition, 2018, 57, 9495-9500.	7.2	205

#	Article	IF	CITATIONS
91	Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries. Nano Research, 2017, 10, 1794-1803.	5.8	67
92	MoSe ₂ â€Covered N,Pâ€Doped Carbon Nanosheets as a Longâ€Life and Highâ€Rate Anode Material for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1700522.	7.8	454
93	High-Performance All-Inorganic Solid-State Sodium–Sulfur Battery. ACS Nano, 2017, 11, 4885-4891.	7.3	133
94	Growth of Au Nanoparticles on 2D Metalloporphyrinic Metalâ€Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions. Advanced Materials, 2017, 29, 1700102.	11.1	384
95	Ionic Exchange of Metal–Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO ₂ . Journal of the American Chemical Society, 2017, 139, 8078-8081.	6.6	1,115
96	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
97	Vanadium sulfide sub-microspheres: A new near-infrared-driven photocatalyst. Journal of Colloid and Interface Science, 2017, 498, 442-448.	5.0	35
98	Graphene Oxide Scroll Meshes Prepared by Molecular Combing for Transparent and Flexible Electrodes. Advanced Materials Technologies, 2017, 2, 1600231.	3.0	12
99	One-Dimensional Yolk–Shell Sb@Ti–O–P Nanostructures as a High-Capacity and High-Rate Anode Material for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 447-454.	4.0	79
100	Graphene coated Co ₃ V ₂ O ₈ micro-pencils for enhanced-performance in lithium ion batteries. New Journal of Chemistry, 2017, 41, 10634-10639.	1.4	18
101	Variation of carbon coatings on the electrochemical performance of LiFePO ₄ cathodes for lithium ionic batteries. RSC Advances, 2017, 7, 44296-44302.	1.7	19
102	Nickel hexacyanoferrate/carbon composite as a high-rate and long-life cathode material for aqueous hybrid energy storage. Chemical Communications, 2017, 53, 10556-10559.	2.2	27
103	Pt4PdCu0.4 alloy nanoframes as highly efficient and robust bifunctional electrocatalysts for oxygen reduction reaction and formic acid oxidation. Nano Energy, 2017, 39, 532-538.	8.2	97
104	FeFe(CN) ₆ Nanocubes as a Bipolar Electrode Material in Aqueous Symmetric Sodiumâ€kon Batteries. ChemPlusChem, 2017, 82, 1170-1173.	1.3	24
105	An in situ iodine-doped graphene/silicon composite paper as a highly conductive and self-supporting electrode for lithium-ion batteries. RSC Advances, 2017, 7, 38639-38646.	1.7	12
106	Carbonates (bicarbonates)/reduced graphene oxide as anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 24645-24650.	5.2	21
107	Biphase-Interface Enhanced Sodium Storage and Accelerated Charge Transfer: Flower-Like Anatase/Bronze TiO ₂ /C as an Advanced Anode Material for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 43648-43656.	4.0	63
108	Facile and controllable synthesis of solid Co ₃ V ₂ O ₈ micro-pencils as a highly efficient anode for Li-ion batteries. RSC Advances, 2017, 7, 24418-24424.	1.7	16

#	Article	IF	CITATIONS
109	Uncoordinated Amine Groups of Metal–Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. Journal of the American Chemical Society, 2017, 139, 9419-9422.	6.6	558
110	VS 4 nanoparticles rooted by a-C coated MWCNTs as an advanced anode material in lithium ion batteries. Energy Storage Materials, 2017, 6, 149-156.	9.5	126
111	Preparation of Singleâ€Layer MoS ₂ <i>_x</i> Se _{2(1â€} <i>_x</i> _x) and Mo <i>_x</i> W _{1â€} <i>_x</i> S ₂ Nanosheets with High oncentration Metallic 1T Phase. Small. 2016. 12. 1866-1874.	5.2	126
112	Conductive Polymer-Coated VS ₄ Submicrospheres As Advanced Electrode Materials in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 18797-18805.	4.0	134
113	Evaluation of operational flexibility for power system with energy storage. , 2016, , .		18
114	Analysis on operational flexibility and generation reliability in generation schedule. , 2016, , .		1
115	Synthesis of Two-Dimensional CoS _{1.097} /Nitrogen-Doped Carbon Nanocomposites Using Metal–Organic Framework Nanosheets as Precursors for Supercapacitor Application. Journal of the American Chemical Society, 2016, 138, 6924-6927.	6.6	591
116	Hierarchically Porous CuCo 2 O 4 Microflowers: a Superior Anode Material for Li-ion Batteries and a Stable Cathode Electrocatalyst for Li-O 2 Batteries. Electrochimica Acta, 2016, 208, 148-155.	2.6	53
117	Gold nanorods coated by oxygen-deficient TiO ₂ as an advanced photocatalyst for hydrogen evolution. RSC Advances, 2016, 6, 39144-39149.	1.7	18
118	Surface-disordered and oxygen-deficient LiTi2-Mn (PO4-)3 nanoparticles for enhanced lithium-ion storage. Journal of Power Sources, 2016, 320, 94-103.	4.0	6
119	Mesoporous Amorphous Silicon: A Simple Synthesis of a Highâ€Rate and Longâ€Life Anode Material for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 14063-14066.	7.2	164
120	Mesoporous Amorphous Silicon: A Simple Synthesis of a Highâ€Rate and Longâ€Life Anode Material for Lithiumâ€Ion Batteries. Angewandte Chemie, 2016, 128, 14269-14272.	1.6	37
121	Titelbild: Porous Molybdenum Phosphide Nanoâ€Octahedrons Derived from Confined Phosphorization in UIOâ€66 for Efficient Hydrogen Evolution (Angew. Chem. 41/2016). Angewandte Chemie, 2016, 128, 12733-12733.	1.6	0
122	In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metalâ€Organic Framework Nanosheets. Small, 2016, 12, 4669-4674.	5.2	101
123	Selfâ€Assembly of Singleâ€Layer CoAlâ€Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Materials, 2016, 28, 7640-7645.	11.1	355
124	Porous Molybdenum Phosphide Nanoâ€Octahedrons Derived from Confined Phosphorization in UIOâ€66 for Efficient Hydrogen Evolution. Angewandte Chemie, 2016, 128, 13046-13050.	1.6	100
125	Doubleâ€Walled Sb@TiO _{2â^'x} Nanotubes as a Superior Highâ€Rate and Ultralongâ€Lifespan Anode Material for Naâ€Ion and Liâ€Ion Batteries. Advanced Materials, 2016, 28, 4126-4133.	11.1	412
126	Design and synthesis of a stable-performance P2-type layered cathode material for sodium ion batteries. RSC Advances, 2016, 6, 55327-55330.	1.7	6

#	Article	IF	CITATIONS
127	Charge transfer accelerates galvanic replacement for PtAgAu nanotubes with enhanced catalytic activity. Nano Research, 2016, 9, 1173-1181.	5.8	20
128	Reduced Graphene Oxideâ€Wrapped MoO ₃ Composites Prepared by Using Metal–Organic Frameworks as Precursor for Allâ€Solidâ€State Flexible Supercapacitors. Advanced Materials, 2015, 27, 4695-4701.	11.1	388
129	Porous MnFe ₂ O ₄ microrods as advanced anodes for Li-ion batteries with long cycle lifespan. Journal of Materials Chemistry A, 2015, 3, 9550-9555.	5.2	49
130	Ether-based nonflammable electrolyte for room temperature sodium battery. Journal of Power Sources, 2015, 284, 222-226.	4.0	54
131	Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 1037-1041.	5.2	192
132	Hollow nanospheres of mesoporous Co 9 S 8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy, 2015, 12, 528-537.	8.2	303
133	Multiwalled carbon nanotube@a-C@Co ₉ S ₈ nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries. Nanoscale, 2015, 7, 3520-3525.	2.8	112
134	Sensors: DNA-Templated Silver Nanoclusters for Multiplexed Fluorescent DNA Detection (Small) Tj ETQq0 0 0 rgB	Г ¦Overloc 5.2	k 10 Tf 50 4
135	Hydrogenated TiO ₂ Branches Coated Mn ₃ O ₄ Nanorods as an Advanced Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 10348-10355.	4.0	81
136	Mn ₃ O ₄ @C core–shell composites as an improved anode for advanced lithium ion batteries. RSC Advances, 2015, 5, 46829-46833.	1.7	14
137	Controlled synthesis of bimetallic Pd–Rh nanoframes and nanoboxes with high catalytic performances. Nanoscale, 2015, 7, 9558-9562.	2.8	54
138	Tunnel-structured Na _{0.54} Mn _{0.50} Ti _{0.51} O ₂ and Na _{0.54} Mn _{0.50} Ti _{0.51} O ₂ /C nanorods as advanced cathode materials for sodium-ion batteries. Chemical Communications, 2015, 51, 8480-8483.	2.2	32
139	General Synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) Hierarchical Microspheres as Lithium-ion Battery Anodes. Electrochimica Acta, 2015, 184, 250-256.	2.6	152
140	Triple-walled SnO ₂ @N-doped carbon@SnO ₂ nanotubes as an advanced anode material for lithium and sodium storage. Journal of Materials Chemistry A, 2015, 3, 23194-23200.	5.2	68
141	Coaxial Manganese Dioxide@N-doped Carbon Nanotubes as Superior Anodes for Lithium Ion Batteries. Electrochimica Acta, 2015, 182, 676-681.	2.6	37
142	Surfaceâ€Amorphous and Oxygenâ€Deficient Li ₃ VO _{4â^'<i>δ</i>} as a Promising Anode Material for Lithiumâ€Ion Batteries. Advanced Science, 2015, 2, 1500090.	5.6	90

143	Synthesis of 4H/fcc-Au@Metal Sulfide Core–Shell Nanoribbons. Journal of the American Chemical Society, 2015, 137, 10910-10913.	6.6	44
144	One-pot solvothermal synthesis of graphene wrapped rice-like ferrous carbonate nanoparticles as anode materials for high energy lithium-ion batteries. Nanoscale, 2015, 7, 232-239.	2.8	46

9

#	Article	IF	CITATIONS
145	A comparative study of lithium-storage performances of hematite: Nanotubes vs. nanorods. Journal of Power Sources, 2014, 245, 429-435.	4.0	62
146	Novel mesoporous silicon nanorod as an anode material for lithium ion batteries. Electrochimica Acta, 2014, 127, 252-258.	2.6	95
147	Kinetics-controlled growth of bimetallic RhAg on Au nanorods and their catalytic properties. Nanoscale, 2014, 6, 4258.	2.8	14
148	Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy, 2014, 6, 193-199.	8.2	154
149	Hierarchical mesoporous Li2Mn0.5Fe0.5SiO4 and Li2Mn0.5Fe0.5SiO4/C assembled by nanoparticles or nanoplates as a cathode material for lithium-ion batteries. Nano Energy, 2014, 7, 1-9.	8.2	28
150	Hierarchical core–shell α-Fe2O3@C nanotubes as a high-rate and long-life anode for advanced lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 3439-3444.	5.2	55
151	Synthesis of novel morphologies of Li2FeSiO4/C micro/nano composites by a facile hydrothermal method. RSC Advances, 2014, 4, 39889-39893.	1.7	9
152	Facile synthesis of hierarchically porous NiO micro-tubes as advanced anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 16847-16850.	5.2	73
153	General synthesis of hollow MnO ₂ , Mn ₃ O ₄ and MnO nanospheres as superior anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 17421-17426.	5.2	213
154	Gold nanorod-templated synthesis of polymetallic hollow nanostructures with enhanced electrocatalytic performance. Nanoscale, 2014, 6, 11732-11737.	2.8	19
155	Hierarchical vanadium pentoxide microflowers with excellent long-term cyclability at high rates for lithium ion batteries. Journal of Power Sources, 2014, 272, 991-996.	4.0	46
156	A general approach for MFe 2 O 4 (MÂ=ÂZn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries. Journal of Power Sources, 2014, 247, 163-169.	4.0	158
157	Preparation of polypyrrole-coated CuFe2O4 and their improved electrochemical performance as lithium-ion anodes. Journal of Energy Chemistry, 2014, 23, 354-357.	7.1	13
158	Facile synthesis of loaf-like ZnMn2O4 nanorods and their excellent performance in Li-ion batteries. Nanoscale, 2013, 5, 2442.	2.8	176
159	One-step solid state reaction to selectively fabricate cubic and tetragonal CuFe2O4 anode material for high power lithium ion batteries. Electrochimica Acta, 2013, 102, 51-57.	2.6	124
160	Hybrid PdAg alloy-Au nanorods: Controlled growth, optical properties and electrochemical catalysis. Nano Research, 2013, 6, 571-580.	5.8	37
161	Facile synthesis and optical properties of ultrathin Cu-doped ZnSe nanorods. CrystEngComm, 2013, 15, 10495.	1.3	10
162	A dealloying process of core–shell Au@AuAg nanorods for porous nanorods with enhanced catalytic activity. Nanoscale, 2013, 5, 12582.	2.8	50

#	Article	IF	CITATIONS
163	Enhanced Lithium Storage Performances of Hierarchical Hollow MoS ₂ Nanoparticles Assembled from Nanosheets. ACS Applied Materials & Interfaces, 2013, 5, 1003-1008.	4.0	277
164	Facile solid-state synthesis of Li2MnSiO4/C nanocomposite as a superior cathode with a long cycle life. Journal of Power Sources, 2013, 231, 39-43.	4.0	36
165	Controlled Growth of Porous αâ€Fe ₂ O ₃ Branches on βâ€MnO ₂ Nanorods for Excellent Performance in Lithiumâ€Ion Batteries. Advanced Functional Materials, 2013, 23, 4049-4056.	7.8	181
166	Effect of different carbon sources on the electrochemical properties of rod-like LiMnPO4–C nanocomposites. RSC Advances, 2013, 3, 6847.	1.7	37
167	Porous ZnFe2O4 Nanospheres Grown on Graphene Nanosheets as a Superior Anode Material for Lithium Ion Batteries. Chemistry Letters, 2012, 41, 639-641.	0.7	18
168	Facile synthesis, optical properties and growth mechanism of elongated Mn-doped ZnSe1â´'xSx nanocrystals. CrystEngComm, 2012, 14, 8440.	1.3	9
169	Lateral Etching of Core–Shell Au@Metal Nanorods to Metal-Tipped Au Nanorods with Improved Catalytic Activity. ACS Nano, 2012, 6, 1165-1175.	7.3	129
170	Additive-assisted synthesis of boride, carbide, and nitride micro/nanocrystals. Journal of Solid State Chemistry, 2012, 194, 219-224.	1.4	24
171	One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Research, 2012, 5, 477-485.	5.8	241
172	Enhanced electrochemical properties of nano-Li3PO4 coated on the LiMn2O4 cathode material for lithium ion battery at 55°C. Materials Letters, 2012, 66, 168-171.	1.3	57
173	High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst. Renewable Energy, 2012, 37, 192-196.	4.3	64
174	Synthesis and Catalytic Properties of Carbon-Nanotube-Supported RuO2 Catalyst Encapsulated in Silica Coating. Catalysis Letters, 2012, 142, 100-107.	1.4	3
175	A novel carbothermal reduction nitridation route to MoN nanoparticles on CNTs support. Journal of Materials Chemistry, 2011, 21, 6898.	6.7	17
176	In situ growth, structure characterization, and enhanced photocatalysis of high-quality, single-crystalline ZnTe/ZnO branched nanoheterostructures. Nanoscale, 2011, 3, 4418.	2.8	34
177	Steam Reforming of Oxygenate Fuels for Hydrogen Production: A Thermodynamic Study. Energy & Fuels, 2011, 25, 2643-2650.	2.5	49
178	Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance. Catalysis Communications, 2011, 12, 689-693.	1.6	138
179	Crystal engineering and SERS properties of Ag–Fe3O4 nanohybrids: from heterodimer to core–shell nanostructures. Journal of Materials Chemistry, 2011, 21, 17930.	6.7	59
180	Boron and nitrogen-codoped TiO2 nanorods: Synthesis, characterization, and photoelectrochemical properties. Journal of Solid State Chemistry, 2011, 184, 3002-3007.	1.4	24

#	Article	IF	CITATIONS
181	Controlled synthesis of octahedral Cu2O on TiO2 nanotube arrays by electrochemical deposition. Materials Chemistry and Physics, 2011, 130, 316-322.	2.0	20
182	Preparation of nitrogen doped TiO2 photocatalyst by oxidation of titanium nitride with H2O2. Materials Research Bulletin, 2011, 46, 840-844.	2.7	50
183	Facile synthesis of MnO2/CNT nanocomposite and its electrochemical performance for supercapacitors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1073-1078.	1.7	105
184	Facile Preparation of an Excellent Pt/RuO ₂ â€MnO ₂ /CNTs Nanocatalyst for Anodes of Direct Methanol Fuel Cells. Fuel Cells, 2011, 11, 301-308.	1.5	28
185	Phosphorusâ€Doped Graphite Layers with High Electrocatalytic Activity for the O ₂ Reduction in an Alkaline Medium. Angewandte Chemie - International Edition, 2011, 50, 3257-3261.	7.2	647
186	Selective Catalysis of the Aerobic Oxidation of Cyclohexane in the Liquid Phase by Carbon Nanotubes. Angewandte Chemie - International Edition, 2011, 50, 3978-3982.	7.2	234
187	Chemical Synthesis, Structural Characterization, Optical Properties, and Photocatalytic Activity of Ultrathin ZnSe Nanorods. Chemistry - A European Journal, 2011, 17, 8663-8670.	1.7	40
188	Auto-thermal ethanol micro-reformer with a structural Ir/La2O3/ZrO2 catalyst for hydrogen production. Chemical Engineering Journal, 2011, 167, 322-327.	6.6	15
189	Preparation of B, N-codoped nanotube arrays and their enhanced visible light photoelectrochemical performances. Electrochemistry Communications, 2011, 13, 121-124.	2.3	48
190	Novel highly efficient alumina-supported cobalt nitride catalyst for preferential CO oxidation at high temperatures. International Journal of Hydrogen Energy, 2011, 36, 1955-1959.	3.8	45
191	Effect of nitrogen-doping temperature on the structure and photocatalytic activity of the B,N-doped TiO2. Journal of Solid State Chemistry, 2011, 184, 134-140.	1.4	50
192	Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol. Renewable Energy, 2011, 36, 2120-2127.	4.3	41
193	High Oxygenâ€Reductionâ€Activity and Methanolâ€Tolerance Cathode Catalyst Cu/PtFe/CNTs for Direct Methanol Fuel Cells. Fuel Cells, 2010, 10, 99-105.	1.5	3
194	The influence of ultrasound on the formation of TiO2 nanotube arrays. Materials Research Bulletin, 2010, 45, 200-204.	2.7	18
195	Electrodeposition preparation of octahedral-Cu2O-loaded TiO2 nanotube arrays for visible light-driven photocatalysis. Scripta Materialia, 2010, 63, 159-161.	2.6	54
196	Efficient and stable oxidative steam reforming of ethanol for hydrogen production: Effect of in situ dispersion of Ir over Ir/La2O3. Journal of Catalysis, 2010, 269, 281-290.	3.1	70
197	Chemical Synthesis, Structure Characterization, and Optical Properties of Hollow PbS _{<i>x</i>} –Solid Au Heterodimer Nanostructures. Chemistry - A European Journal, 2010, 16, 5920-5926.	1.7	20
198	Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3. Chemical Engineering Journal, 2010, 160, 333-339.	6.6	89

#	Article	IF	CITATIONS
199	Thermal stability of gold nanorods in an aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 372, 177-181.	2.3	59
200	Development of stable PtRu catalyst coated with manganese dioxide for electrocatalytic oxidation of methanol. Electrochemistry Communications, 2010, 12, 1210-1213.	2.3	49
201	Synthesis and Characterization of Novel N-doped TiO2 Photocatalyst with Visible Light Active. Chinese Journal of Chemical Physics, 2010, 23, 437-441.	0.6	9
202	Quantum Dot-Encoded Beads for Ultrasensitive Detection. Recent Patents on Nanotechnology, 2009, 3, 192-202.	0.7	4
203	Preparation of NaxBayBiO3·nH2O and their photooxidation characteristic under visible-light irradiation. Materials Chemistry and Physics, 2009, 116, 294-299.	2.0	17
204	Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides. Journal of Natural Gas Chemistry, 2009, 18, 191-198.	1.8	33
205	One‣tep Synthesis and Characterization of Gold–Hollow PbS _{<i>x</i>} Hybrid Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 3991-3995.	7.2	36
206	MnO ₂ /CNT Supported Pt and PtRu Nanocatalysts for Direct Methanol Fuel Cells. Langmuir, 2009, 25, 7711-7717.	1.6	169
207	The role of RuO2 in the electrocatalytic oxidation of methanol for direct methanol fuel cell. Catalysis Communications, 2009, 10, 533-537.	1.6	57
208	Selective etching of gold nanorods by ferric chloride at room temperature. CrystEngComm, 2009, 11, 2797.	1.3	100
209	Capacitance dependent catalytic activity of RuO2·xH2O/CNT nanocatalysts for aerobic oxidation of benzyl alcohol. Chemical Communications, 2009, , 2408.	2.2	33
210	Deactivation and regeneration of RuO2·xH2O/CNT catalyst for aerobic oxidation of benzyl alcohol. Catalysis Communications, 2009, 10, 1752-1756.	1.6	13
211	Preparation and characterization of Cu2O/TiO2 nano–nano heterostructure photocatalysts. Catalysis Communications, 2009, 10, 1839-1843.	1.6	170
212	Quantum Dot-Encoded Fluorescent Beads for Biodetection and Imaging. Reviews in Fluorescence, 2009, , 139-156.	0.5	4
213	Effects of RuO2 Content in Pt/RuO2/CNTs Nanocatalyst on the Electrocatalytic Oxidation Performance of Methanol. Chinese Journal of Catalysis, 2008, 29, 1093-1098.	6.9	13
214	Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity. Journal of Solid State Chemistry, 2008, 181, 130-136.	1.4	282
215	Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method. Journal of Physics and Chemistry of Solids, 2008, 69, 1657-1664.	1.9	163
216	Assessment and optimization of the mass-transfer limitation in a metal foam methanol microreformer. Applied Catalysis A: General, 2008, 337, 155-162.	2.2	31

#	Article	IF	CITATIONS
217	Mesoporous zinc-blende ZnS nanoparticles: synthesis, characterization and superior photocatalytic properties. Nanotechnology, 2008, 19, 255603.	1.3	42
218	Ultrasensitive detection and molecular imaging with magnetic nanoparticles. Analyst, The, 2008, 133, 154-160.	1.7	43
219	Quantum Dot Nanobarcodes: Epitaxial Assembly of Nanoparticleâ^'Polymer Complexes in Homogeneous Solution. Journal of the American Chemical Society, 2008, 130, 5286-5292.	6.6	112
220	Kinetically Controlled Side-Wall Functionalization of Carbon Nanotubes by Nitric Acid Oxidation. Journal of Physical Chemistry C, 2008, 112, 6758-6763.	1.5	128
221	RuO2·xH2O Supported on Carbon Nanotubes as a Highly Active Catalyst for Methanol Oxidation. Journal of Physical Chemistry C, 2008, 112, 11875-11880.	1.5	37
222	Intensity-dependent enhancement of saturable absorption in PbS–Au4 nanohybrid composites: Evidence for resonant energy transfer by Auger recombination. Applied Physics Letters, 2008, 92, .	1.5	22
223	Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). Journal of Colloid and Interface Science, 2007, 316, 277-283.	5.0	346
224	Rational Synthesis, Self-Assembly, and Optical Properties of PbSâ^'Au Heterogeneous Nanostructures via Preferential Deposition. Journal of the American Chemical Society, 2006, 128, 11921-11926.	6.6	240
225	Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods. Applied Physics Letters, 2006, 88, 083107.	1.5	235
226	Controlled growth of aluminium nitride nanorod arrays via chemical vapour deposition. Nanotechnology, 2006, 17, S321-S326.	1.3	28
227	Organic solvent dependence of plasma resonance of gold nanorods: A simple relationship. Chemical Physics Letters, 2005, 416, 215-219.	1.2	55
228	Determination of Chlorine Dioxide Using Capillary On-Line Concentration Coupled with Flow Injection Analysis. Mikrochimica Acta, 2004, 148, 171-175.	2.5	8
229	A Chain-Structure Nanotube: Growth and Characterization of Single-Crystal Sb2S3 Nanotubes via a Chemical Vapor Transport Reaction. Advanced Materials, 2004, 16, 713-716.	11.1	74
230	Synthesis and Characterization of Coreâ^'Shell GaP@GaN and GaN@GaP Nanowires. Nano Letters, 2003, 3, 537-541.	4.5	136
231	Soft solution processing of cerium hydroxysulfate powders with different morphologies. Journal of Materials Chemistry, 2003, 13, 150-153.	6.7	21
232	Fabrication of mesoporous CdS nanorods by chemical etching. Journal of Materials Research, 2003, 18, 396-401.	1.2	11
233	Growth and Optical Properties of GaP, GaP@GaN and GaN@GaP Core-shell Nanowires. Materials Research Society Symposia Proceedings, 2003, 776, 261.	0.1	0
234	General Synthesis of Semiconductor Chalcogenide Nanorods by Using the Monodentate Ligandn-Butylamine as a Shape Controller. Angewandte Chemie - International Edition, 2002, 41, 4697-4700.	7.2	150

#	Article	IF	CITATIONS
235	Morphology development of CdS/PVAc composite from spheres to rods. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 94, 131-135.	1.7	6
236	Optical properties of ZnS nanosheets, ZnO dendrites, and their lamellar precursor ZnS·(NH2CH2CH2NH2)0.5. Chemical Physics Letters, 2002, 361, 362-366.	1.2	85
237	Nanocomposite of CdS particles in polymer rods fabricated by a novel hydrothermal polymerization and simultaneous sulfidation technique. Chemical Communications, 2001, , 1332-1333.	2.2	21
238	One-Dimensional PbS/Polymer Nanocomposite of Core/Sheath Structure Fabricated by Hydrothermal Polymerization and Simultaneous Sulfidation. Chemistry Letters, 2001, 30, 1000-1001.	0.7	3
239	Shape Control and Characterization of Transition Metal Diselenides MSe2(M = Ni, Co, Fe) Prepared by a Solvothermal-Reduction Process. Chemistry of Materials, 2001, 13, 848-853.	3.2	159
240	A novel morphology controllable preparation method to HgS. Materials Research Bulletin, 2001, 36, 343-348.	2.7	36
241	CdTe nanocrystallites with different morphologies and phases by solvothermal process. Materials Research Bulletin, 2000, 35, 1509-1515.	2.7	16
242	Formation Process of CdS Nanorods via Solvothermal Route. Chemistry of Materials, 2000, 12, 3259-3263.	3.2	374
243	Pressure-Controlled Fabrication of Stibnite Nanorods by the Solvothermal Decomposition of a Simple Single-Source Precursor. Chemistry of Materials, 2000, 12, 2924-2929.	3.2	103
244	A solvothermal decomposition process for fabrication and particle sizes control of Bi ₂ S ₃ nanowires. Journal of Materials Research, 1999, 14, 4157-4162.	1.2	100
245	Synthesis and Phase Transformation of IB-VIA Nonstoichiometric Nanocrystalline Tellurides by a Hydrothermal-Reduction Process. Journal of Solid State Chemistry, 1999, 146, 387-389.	1.4	8
246	Novel Solvothermal Fabrication of CdSxSe1â^'x Nanowires. Journal of Solid State Chemistry, 1999, 147, 637-640.	1.4	19
247	Synthesis and Formation Mechanism of La2O2S via a Novel Solvothermal Pressure-Relief Process. Chemistry of Materials, 1999, 11, 192-194.	3.2	62
248	Controllable synthesis of nanocrystalline CdS with different morphologies and particle sizes by a novel solvothermal process. Journal of Materials Chemistry, 1999, 9, 1283-1287.	6.7	144
249	A New Solvothermal-Reduction Pathway to Nanocrystalline MTe (M = Zn, Pb). Chemistry Letters, 1999, 28, 839-840.	0.7	11
250	Organothermal Synthesis and Characterization of Nanocrystalline ßâ€Indium Sulfide. Journal of the American Ceramic Society, 1999, 82, 457-460.	1.9	47
251	Hydrothermal Preparation and Characterization of Nanocrystalline Powder of Î ² -Indium Sulfide. Materials Research Bulletin, 1998, 33, 717-721.	2.7	69
252	Benzene-thermal synthesis and characterization of ultrafine powders of antimony sulfide. Materials Research Bulletin, 1998, 33, 1207-1211.	2.7	27

#	Article	IF	CITATIONS
253	Hydrothermal preparation and characterization of rod-like ultrafine powders of bismuth sulfide. Materials Research Bulletin, 1998, 33, 1661-1666.	2.7	54
254	Benzene-thermal synthesis and optical properties of CdS nanocrystalline. Scripta Materialia, 1998, 10, 1307-1316.	0.5	14
255	A Novel Solventothermal Synthetic Route to Nanocrystalline CdE (E = S, Se, Te) and Morphological Control. Chemistry of Materials, 1998, 10, 2309-2312.	3.2	198
256	A new low temperature one-step route to metal chalcogenide semiconductors: PbE, Bi2E3 (E=S, Se, Te). Journal of Materials Chemistry, 1998, 8, 1949-1951.	6.7	103
257	A novel organothermal reduction process for producing nanocrystalline Ni2P with a circular-shaped flake morphology. Journal of Materials Research, 1998, 13, 3365-3367.	1.2	5
258	Solvothermal Preparation of Silver Chalcogenides Ag2E (E = S, Se, Te). Chemistry Letters, 1998, 27, 1111-1112.	0.7	5
259	Recent advanced skeletons in sodium metal anodes. Energy and Environmental Science, 0, , .	15.6	69