Hiromasa Nishikiori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5457851/publications.pdf

Version: 2024-02-01

130	1,521	20	31
papers	citations	h-index	g-index
131	131	131	1468
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Absorption spectra of rhodamine B dimers in dip-coated thin films prepared by the sol-gel method. Chemical Physics Letters, 1995, 233, 424-429.	2.6	90
2	Molecular Forms of Rhodamine B in Dip-Coated Thin Films. Journal of Physical Chemistry B, 1997, 101, 3680-3687.	2.6	68
3	Photochemical deposition of Ag nanoparticles on multiwalled carbon nanotubes. Carbon, 2009, 47, 2752-2754.	10.3	59
4	Photocatalytic degradation of trichloroethylene using N-doped TiO2 prepared by a simple sol–gel process. Research on Chemical Intermediates, 2009, 35, 43-53.	2.7	55
5	Change in Titania Structure from Amorphousness to Crystalline Increasing Photoinduced Electron-Transfer Rate in Dye-Titania System. Journal of Physical Chemistry C, 2007, 111, 9008-9011.	3.1	49
6	Degradation of trichloroethylene using highly adsorptive allophane–TiO2 nanocomposite. Applied Catalysis B: Environmental, 2011, 102, 470-474.	20.2	38
7	Preparation and luminescent properties of Eu-doped transparent mica glass–ceramics. Ceramics International, 2010, 36, 1303-1309.	4.8	35
8	Influence of Steam Treatment on Dyeâ-'Titania Complex Formation and Photoelectric Conversion Property of Dye-Doped Titania Gel. Journal of Physical Chemistry C, 2011, 115, 2880-2887.	3.1	35
9	Visible Light-Photocatalytic Activity of Sulfate-Doped Titanium Dioxide Prepared by the Solâ^'Gel Method. Catalysts, 2013, 3, 363-377.	3.5	35
10	Preparation of Cu-doped TiO2 via refluxing of alkoxide solution and its photocatalytic properties. Research on Chemical Intermediates, 2012, 38, 595-613.	2.7	34
11	Photocatalytic and Photoelectrochemical Hydrogen Evolution from Water over Cu ₂ Sn _{<i>x</i>} Ge _{1â€"<i>x</i>} S ₃ Particles. Journal of the American Chemical Society, 2021, 143, 5698-5708.	13.7	33
12	Acid–Base and Monomer–Dimer Equilibria of Methylene Blue in Dip-Coated Thin Films. Bulletin of the Chemical Society of Japan, 1999, 72, 915-921.	3.2	32
13	Photocurrent observed in dye-doped titania gel. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 125-129.	3.9	32
14	Chloride Flux Growth of La ₂ Ti ₂ O ₇ Crystals and Subsequent Nitridation To Form LaTiO ₂ N Crystals. Crystal Growth and Design, 2015, 15, 124-128.	3.0	27
15	Novel fabrication of NIR-vis upconversion NaYF4:Ln (Ln = Yb, Er, Tm) crystal layers by a flux coating method. Journal of Materials Chemistry, 2011, 21, 13847.	6.7	26
16	Photoelectric Conversion Properties of Dye-Sensitized Solar Cells Using Dye-Dispersing Titania. Journal of Physical Chemistry C, 2012, 116, 4848-4854.	3.1	25
17	Low-Temperature Flux Growth and Upconversion Fluorescence of the Idiomorphic Hexagonal-System NaYF4and NaYF4:Ln (Ln = Yb, Er, Tm) Crystals. Crystal Growth and Design, 2011, 11, 4825-4830.	3.0	23
18	Dispersion of Acid-Treated Carbon Nanofibers into Gel Matrices Prepared by the Solâ^'Gel Method. Journal of Physical Chemistry B, 2005, 109, 23170-23174.	2.6	22

#	Article	lF	Citations
19	Effect of steam treatment on photocurrent and dye–titania interaction in dye-doped titania gel. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 192, 220-225.	3.9	22
20	Boosted Hydrogenâ€Evolution Kinetics Over Particulate Lanthanum and Rhodiumâ€Doped Strontium Titanate Photocatalysts Modified with Phosphonate Groups. Angewandte Chemie - International Edition, 2021, 60, 3654-3660.	13.8	22
21	Photocatalytic degradation of chlorinated ethenes. International Journal of Photoenergy, 2003, 5, 11-15.	2.5	21
22	Z-Scheme Overall Water Splitting Using Zn <i>_×</i> Cd _{1â€"<i>×</i>} Se Particles Coated with Metal Cyanoferrates as Hydrogen Evolution Photocatalysts. ACS Catalysis, 2021, 11, 8004-8014.	11,2	21
23	Solvent effect on fluorescence spectra of a spirooxazine. Research on Chemical Intermediates, 2003, 29, 485-493.	2.7	20
24	Intercalation of Spirooxazine Induced by Zinc Cation Chelation in Montmorillonite and Its Photochromic Behavior. Chemistry Letters, 2000, 29, 1142-1143.	1.3	18
25	Photo-electric conversion in dye-doped nanocrystalline titania films. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207, 204-208.	3.9	18
26	Removal of detergents and fats from waste water using allophane. Applied Clay Science, 2010, 47, 325-329.	5.2	17
27	Reaction in photofuel cells using allophane–titania nanocomposite electrodes. Applied Catalysis B: Environmental, 2014, 147, 246-250.	20.2	17
28	Exceptional Flux Growth and Chemical Transformation of Metastable Orthorhombic LiMnO2 Cuboids into Hierarchically-Structured Porous H1.6Mn1.6O4 Rods as Li Ion Sieves. Crystal Growth and Design, 2016, 16, 6178-6185.	3.0	17
29	Zinc Chelation and Photofluorochromic Behavior of Spironaphthoxazine Intercalated into Hydrophobically Modified Montmorillonite. Langmuir, 2006, 22, 3376-3380.	3.5	16
30	Molecular forms and fluorescence processes of 9-aminoacridine in thin sol–gel films. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 212, 62-67.	3.9	16
31	Enhanced photoelectrochemical performance from particulate ZnSe:Cu(ln,Ga)Se ₂ photocathodes during solar hydrogen production <i>via</i> particle size control. Sustainable Energy and Fuels, 2021, 5, 412-423.	4.9	16
32	Chelation of spironaphthoxazine with zinc ions and its photochromic behavior during the sol–gel–xerogel transitions of alkyl silicon alkoxide. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 46-54.	3.9	15
33	Nitrogen doping into titanium dioxide by the sol–gel method using nitric acid. Research on Chemical Intermediates, 2011, 37, 869-881.	2.7	15
34	Electron Transfer Process in Fluorescein-Dispersing Titania Gel Films Observed by Time-Resolved Fluorescence Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 10308-10314.	3.1	15
35	Platy KTiNbO5 as a Selective Sr Ion Adsorbent: Crystal Growth, Adsorption Experiments, and DFT Calculations. Journal of Physical Chemistry C, 2016, 120, 11984-11992.	3.1	15
36	Photofuel Cells Using Allophane–Titania Nanocomposites. Chemistry Letters, 2012, 41, 725-727.	1.3	14

#	Article	IF	CITATIONS
37	Photoinduced electron transport in dye-containing titania gel films. RSC Advances, 2012, 2, 4258.	3.6	14
38	Microstructures and luminescent properties of Ce-doped transparent mica glass-ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 504-509.	3.5	13
39	Crystal growth of titania by photocatalytic reaction. Applied Catalysis B: Environmental, 2017, 217, 241-246.	20.2	13
40	Influence of water on molecular forms of rhodamine B in dip-coated thin films. Research on Chemical Intermediates, 2000, 26, 469-482.	2.7	12
41	In situ characterization of surface physicochemical properties of carbon nanofibers using 1-naphthol as a fluorescent probe. Chemical Physics Letters, 2004, 390, 389-393.	2.6	12
42	Quantitative characterization of surface adsorption sites of carbon nanofibers by in-situ fluorescence measurement using 1-naphthol. Chemical Physics Letters, 2005, 412, 223-227.	2.6	12
43	Chelation of spironaphthoxazine with zinc ions during the sol–gel–xerogel transitions in silicon alkoxide systems. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183, 53-58.	3.9	12
44	Fabrication of NIR-Vis Upconversion YO _{1â€"<i>x</i>} F _{1+2<i>x</i>} :Ln (Ln = Yb, Er,) Tj E Design, 2013, 13, 1187-1192.	TQq0 0 0 3.0	rgBT /Overloo 12
45	Formation of silica nanolayer on titania surface by photocatalytic reaction. Applied Catalysis B: Environmental, 2019, 241, 299-304.	20.2	12
46	Absorption and fluorescence spectra of 9-anthrol and its chemical species in solution. Research on Chemical Intermediates, 1997, 23, 829-839.	2.7	11
47	Title is missing!. Journal of Sol-Gel Science and Technology, 2001, 20, 95-104.	2.4	11
48	Fluorescence observation of pyrene adsorbed on carbon nanofibers. Chemical Physics Letters, 2007, 448, 218-222.	2.6	11
49	Photocatalytic activity of titania layer prepared by oxidizing titanium compounds on titanium plate surface. Applied Catalysis B: Environmental, 2012, 127, 227-233.	20.2	11
50	Electrochemical Evaluation for Multiple Functions of Ptâ€loaded TiO 2 Nanoparticles Deposited on a Photocathode. ChemElectroChem, 2019, 6, 4859-4866.	3.4	11
51	Relationships Between Fluorescence Properties of Benzoquinolines and Physicochemical Changes in the Sol?Gel?Xerogel Transitions of Silicon Alkoxide Systems. Journal of Sol-Gel Science and Technology, 2005, 33, 333-340.	2.4	10
52	In situ probing of acidic groups on acid-treated carbon nanofibers using 1-aminopyrene. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193, 161-165.	3.9	10
53	Photocatalytic degradation of dichloroacetyl chloride adsorbed on TiO2. Research on Chemical Intermediates, 2010, 36, 947-957.	2.7	10
54	Quantitative characterization of acidic groups on acid-treated multi-walled carbon nanotubes using 1-aminopyrene as a fluorescent probe. Carbon, 2014, 66, 560-566.	10.3	10

#	Article	IF	CITATIONS
55	Titanium Complex Formation of Organic Ligands in Titania Gels. Langmuir, 2015, 31, 964-969.	3.5	10
56	Photochromic behavior of spironaphthoxazine in metal ion-containing solutions. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 236-240.	3.9	9
57	Dimerization of xanthene dyes in sol–gel titania films. Catalysis Science and Technology, 2013, 3, 2786.	4.1	9
58	Influence of dye dispersion on photoelectric conversion properties of dye-containing titania electrodes. Catalysis Science and Technology, 2013, 3, 1512.	4.1	9
59	Preparation of Dye-Adsorbing ZnO Thin Films by Electroless Deposition and Their Photoelectrochemical Properties. ACS Applied Materials & Interfaces, 2013, 5, 8841-8844.	8.0	9
60	Crystal structure and photoelectric conversion properties of eosin Y-adsorbing ZnO films prepared by electroless deposition. Applied Catalysis B: Environmental, 2016, 189, 51-55.	20.2	9
61	Matrix isolation and theoretical study on the photolysis of trichloroacetyl chloride. Chemical Physics Letters, 2006, 423, 434-438.	2.6	8
62	Chelation ability of spironaphthoxazine with metal ions in silica gel. Photochemical and Photobiological Sciences, 2012, 11, 1164.	2.9	8
63	Complex Formation in 8-Hydroxyquinoline-containing Titania Gel Films. Chemistry Letters, 2013, 42, 556-558.	1.3	8
64	Formation of ZnO thin films by photocatalytic reaction. Applied Catalysis B: Environmental, 2014, 160-161, 651-657.	20.2	8
65	Flux-boosted coating of idiomorphic CulnS ₂ crystal layers on Mo-coated glass substrate. CrystEngComm, 2016, 18, 3612-3616.	2.6	8
66	Formation of CuO on TiO2 Surface Using its Photocatalytic Activity. Catalysts, 2019, 9, 383.	3.5	8
67	Deposition of ZnO Particles by Photocatalytic Reaction. Chemistry Letters, 2012, 41, 993-995.	1.3	7
68	Zinc complex formation of organic ligands on zinc oxide and titanium dioxide. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 327, 51-57.	3.9	7
69	Spectroscopic Evaluation of the Length of Poly(ethylene glycol) Covalently Attached to Multiwalled Carbon Nanotubes. Chemistry Letters, 2009, 38, 890-891.	1.3	6
70	Matrix-isolation infrared spectroscopy of 2,3-, 2,4-, 2,5- and 3,4-difluorobenzaldehydes. Journal of Molecular Structure, 2011, 1000, 35-38.	3.6	6
71	Fluorescence properties of aromatic amine adsorbed on metallic and semiconducting single-walled carbon nanotubes. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 218, 226-230.	3.9	6
72	Degradation of Trichloroethylene Using Allophane–Titania Nanocomposite Supported on Porous Filter. Chemistry Letters, 2015, 44, 639-641.	1.3	6

#	Article	IF	Citations
73	Influence of allophane distribution on photocatalytic activity of allophane–titania composite films. Applied Clay Science, 2017, 146, 43-49.	5.2	6
74	In Situ Probing of Photoinduced Hydrophilicity on Titania Surface Using Dye Molecules. ACS Omega, 2019, 4, 5944-5949.	3.5	6
75	Photoelectrochemical Complete Decomposition of Cellulose for Electric Power Generation. ChemCatChem, 2021, 13, 1530-1537.	3.7	6
76	Photocatalytic oxygen evolution triggered by photon upconverted emission based on triplet–triplet annihilation. Physical Chemistry Chemical Physics, 2021, 23, 5673-5679.	2.8	6
77	Accelerated photoelectrochemical oxygen evolution over a BaTaO2N photoanode modified with cobalt-phosphate-loaded TiO2 nanoparticles. Applied Physics Letters, 2021, 119, 123902.	3.3	6
78	Degradation and isomerization of 1,2-dichloroethenes by photocatalytic reactions. Research on Chemical Intermediates, 2003, 29, 827-837.	2.7	5
79	Influences of Acid on Molecular Forms of Fluorescein and Photoinduced Electron Transfer in Fluoresceinâ€Dispersing Sol–Gel Titania Films. Photochemistry and Photobiology, 2014, 90, 747-759.	2.5	5
80	Influence of Dye Content on the Conduction Band Edge of Titania in the Steamâ€treated Dyeâ€dispersing Titania Electrodes. Photochemistry and Photobiology, 2014, 90, 1004-1011.	2.5	5
81	Potential levels of metal complexes of 8-hydroxyquinoline. Chemical Physics Letters, 2016, 662, 146-151.	2.6	5
82	Reaction Kinetics on Allophane–Titania Nanocomposite Electrodes for Photofuel Cells. Chemistry Letters, 2017, 46, 659-661.	1.3	5
83	Photon Upconverted Emission Based on Dye-Sensitized Triplet–Triplet Annihilation in Silica Sol–Gel System. ACS Omega, 2018, 3, 8529-8536.	3.5	5
84	Observation of Photoinduced Proton Transfer between the Titania Surface and Dye Molecule. Journal of Physical Chemistry C, 2020, 124, 4172-4178.	3.1	5
85	Enhanced Photocurrent in Nanocomposite of Dye-doped Titania Gel and Carbon Nanotubes. Chemistry Letters, 2008, 37, 940-941.	1.3	4
86	Energetics of the rotational isomers of thiophenecarboxaldehydes in the ground state. Chemical Physics Letters, 2011, 514, 247-250.	2.6	4
87	Photocatalytic reaction on photofuel cell titania electrode. Research on Chemical Intermediates, 2012, 38, 241-250.	2.7	4
88	Influence of Cu distribution on photocatalytic activity of Cu-doped titania prepared using metal alkoxides. Research on Chemical Intermediates, 2016, 42, 4813-4825.	2.7	4
89	Phase transition and crystal growth of a titania layer on a titanium metal plate. Research on Chemical Intermediates, 2018, 44, 7539-7555.	2.7	4
90	Theoretical studies on carbonyl halide–water complexes. Chemical Physics, 2004, 306, 25-34.	1.9	3

#	Article	IF	Citations
91	Proton donor–acceptor property of matrix during the sol–gel reaction. Research on Chemical Intermediates, 2009, 35, 227-240.	2.7	3
92	Photofuel cells using glucose-doped titania. Applied Catalysis B: Environmental, 2011, 106, 250-250.	20.2	3
93	Formation Process of Eosin Y-Adsorbing ZnO Particles by Electroless Deposition and Their Photoelectric Conversion Properties. ACS Applied Materials & Eamp; Interfaces, 2015, 7, 11592-11598.	8.0	3
94	Photoinduced electron transfer in rhodamine B-containing amorphous titania gels. Research on Chemical Intermediates, 2015, 41, 3803-3816.	2.7	3
95	Performance of Photofuel Cells Effectively Using Cellulose Film. Chemistry Letters, 2019, 48, 437-440.	1.3	3
96	Photoelectrochemical Properties of Particulate CuGaSe2 and CuIn0.7Ga0.3Se2 Photocathodes in Nonaqueous Electrolyte. Bulletin of the Chemical Society of Japan, 2020, 93, 942-948.	3.2	3
97	Insights into the Electrocatalytic Oxidation of Cellulose in Solution toward Applications in Direct Cellulose Fuel Cells. Journal of Physical Chemistry C, 2021, 125, 14576-14582.	3.1	3
98	Ab initio study on the (O2–HCl)+ complex. Chemical Physics Letters, 2004, 397, 62-66.	2.6	2
99	Possibility of conformation control of Micheler's ketone encapsulated into sol–gel matrices. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 156-160.	3.9	2
100	Laser-enhanced Dispersion of Multiwalled Carbon Nanotubes in Acetonitrile. Chemistry Letters, 2008, 37, 1112-1113.	1.3	2
101	Growth and characterization of pyrene crystals on carbon nanofibers. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 206, 148-154.	3.9	2
102	Enhanced Photocurrent in Nanocomposite of Dye-doped Titania Gel and Carbon Nanotubes. Chemistry Letters, 2010, 39, 530-530.	1.3	2
103	Density functional theory studies on the addition and abstraction reactions of OH radicals with terephthalate dianions. International Journal of Quantum Chemistry, 2013, 113, 418-422.	2.0	2
104	Photoinduced rotamerization and dissociation of o -fluorobenzoyl chloride in solid Ar. Chemical Physics Letters, 2014, 613, 34-39.	2.6	2
105	Photoelectrochemical properties of dye-dispersing allophane–titania composite electrodes. Applied Clay Science, 2015, 107, 138-144.	5. 2	2
106	Surface Modification of Titanium Metal Plate Using Alkali Metal Chlorides. Chemistry Letters, 2016, 45, 729-731.	1.3	2
107	Photoelectrochemical-voltaic cells consisting of particulate Zn _x Cd _{1â^3x} Se photoanodes with photovoltages exceeding 1.23 V. Sustainable Energy and Fuels, 2019, 3, 2733-2741.	4.9	2
108	Water retentivity of allophane–titania nanocomposite films. Applied Catalysis B: Environmental, 2020, 266, 118659.	20.2	2

#	Article	IF	CITATIONS
109	Control of photoinduced metal chelation of spirooxazine. Bulletin of Japan Society of Coordination Chemistry, 2011, 57, 77-80.	0.2	1
110	Photocurrent Generated from Nanoelectrode Consisting of Dye, Titania Gel, and Carbon Nanotube. Chemistry Letters, 2011, 40, 640-641.	1.3	1
111	Influence of adding carbon nanotubes on photoelectric conversion properties of dye-doped titania gel. Research on Chemical Intermediates, 2012, 38, 1857-1869.	2.7	1
112	Photoelectric Conversion Properties of Compositionally Graded Dye–Titania Electrode. Chemistry Letters, 2013, 42, 1391-1393.	1.3	1
113	Utilization of Titania Surface Complex for Dye-Sensitized Solar Cells. Bulletin of Japan Society of Coordination Chemistry, 2014, 64, 28-31.	0.2	1
114	Solvent Recovery using Porous Polydimethylsiloxine Membranes by Low-Pressure Filtration from Waste Liquid Containing Organic Solvent . Journal of Environmental Chemistry, 2014, 24, 113-117.	0.2	1
115	Interaction between dye and zinc in the dye-dispersing ZnO films prepared by a wet process. Research on Chemical Intermediates, 2015, 41, 6559-6574.	2.7	1
116	Observation of Excited State Proton Transfer between the Titania Surface and Dye Molecule by Time-Resolved Fluorescence Spectroscopy. Journal of Physical Chemistry C, 0, , .	3.1	1
117	Fluorescence Properties of Dye Molecules Interacting with Nanoparticle Surface in Dye-Dispersing Titania Gels. Bulletin of Japan Society of Coordination Chemistry, 2018, 72, 30-37.	0.2	1
118	Matrix isolation studies of 185nm light-induced cage reactions of o-chlorobenzaldehyde. Journal of Molecular Structure, 2012, 1025, 48-52.	3.6	0
119	Reaction of spironaphthoxazine with acid. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 252, 100-106.	3.9	0
120	Photoinduced reactions of chloroacetone in solid Ar: Identification of CH 2 COCICH 3. Chemical Physics Letters, 2014, 614, 258-262.	2.6	0
121	Removal of Cesium Ion from Aqueous Solution using Allophane. Journal of Environmental Chemistry, 2014, 24, 77-82.	0.2	0
122	Removal of Trichloroethylene using Coal Fly Ash. Journal of Environmental Chemistry, 2014, 24, 33-39.	0.2	0
123	Photocatalytic degradation of chlorinated propenes using TiO2. Research on Chemical Intermediates, 2015, 41, 7641-7654.	2.7	0
124	Degradation of Acetaldehyde using Allophane . Journal of Environmental Chemistry, 2017, 27, 121-127.	0.2	0
125	Boosted Hydrogenâ€Evolution Kinetics Over Particulate Lanthanum and Rhodiumâ€Doped Strontium Titanate Photocatalysts Modified with Phosphonate Groups. Angewandte Chemie, 2021, 133, 3698-3704.	2.0	0
126	Formation of alkali metal titanate nanocrystals using titanium alkoxide. Research on Chemical Intermediates, 0 , 1 .	2.7	0

#	Article	IF	CITATIONS
127	A semitransparent particulate photoanode composed of SrTiO ₃ powder anchored on titania nanosheets. Sustainable Energy and Fuels, 2021, 5, 4850-4857.	4.9	o
128	Preparation of Ultrathin Films from TiO ₂ -SnO ₂ Hybrid Sol and Their Physical Properties. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2019, 70, 614-617.	0.2	O
129	ãfãfªã,,ãf¦ãfãf«ã,∙ãfã,ã,µãf³è†œã®å¤å°è³ªæ§‹é€ã«ä,Žã•ã,‹å°å½¢æ°å‰æ®å½±éŸ¿ã•低圧膜ã,éŽã«ã,°ã,·	:ã, ¤ £ ?ã ,¯æ¹	º¶æ¶²ã∙ã,‰ãº
130	Photofunctional Materials Using Organic Dyes. Journal of the Japan Society of Colour Material, 2022, 95, 138-143.	0.1	0