
Bao-Liang Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5457514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms and regulation ofÂcholesterol homeostasis. Nature Reviews Molecular Cell Biology, 2020, 21, 225-245.	37.0	899
2	Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature, 2016, 531, 651-655.	27.8	648
3	Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nature Metabolism, 2020, 2, 132-141.	11.9	411
4	Inhibition of SREBP by a Small Molecule, Betulin, Improves Hyperlipidemia and Insulin Resistance and Reduces Atherosclerotic Plaques. Cell Metabolism, 2011, 13, 44-56.	16.2	320
5	Gp78, a Membrane-Anchored Ubiquitin Ligase, Associates with Insig-1 and Couples Sterol-Regulated Ubiquitination to Degradation of HMG CoA Reductase. Molecular Cell, 2005, 19, 829-840.	9.7	317
6	Cholesterol Transport through Lysosome-Peroxisome Membrane Contacts. Cell, 2015, 161, 291-306.	28.9	314
7	The Cholesterol Absorption Inhibitor Ezetimibe Acts by Blocking the Sterol-Induced Internalization of NPC1L1. Cell Metabolism, 2008, 7, 508-519.	16.2	295
8	Insig-dependent Ubiquitination and Degradation of Mammalian 3-Hydroxy-3-methylglutaryl-CoA Reductase Stimulated by Sterols and Geranylgeraniol. Journal of Biological Chemistry, 2003, 278, 52479-52490.	3.4	254
9	Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol. Cell Metabolism, 2005, 1, 179-189.	16.2	236
10	Cholesterol Homeostatic Regulator SCAP-SREBP2 Integrates NLRP3 Inflammasome Activation and Cholesterol Biosynthetic Signaling in Macrophages. Immunity, 2018, 49, 842-856.e7.	14.3	184
11	Cholesterol Modification of Smoothened Is Required for Hedgehog Signaling. Molecular Cell, 2017, 66, 154-162.e10.	9.7	169
12	Insig-dependent Ubiquitination and Degradation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Stimulated by δ- and γ-Tocotrienols. Journal of Biological Chemistry, 2006, 281, 25054-25061.	3.4	157
13	Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nature Biotechnology, 2022, 40, 606-617.	17.5	140
14	Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. Proceedings of the United States of America, 2011, 108, 551-556.	7.1	137
15	Regulation of glucose and lipid metabolism in health and disease. Science China Life Sciences, 2019, 62, 1420-1458.	4.9	134
16	Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis. Nature, 2020, 588, 479-484.	27.8	125
17	In Vivo AAV-CRISPR/Cas9–Mediated Gene Editing Ameliorates Atherosclerosis in Familial Hypercholesterolemia. Circulation, 2020, 141, 67-79.	1.6	124
18	Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators. Journal of Steroid Biochemistry and Molecular Biology, 2015, 151, 102-107.	2.5	123

#	Article	IF	CITATIONS
19	Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol. Nature Communications, 2018, 9, 5138.	12.8	112
20	Ablation of gp78 in Liver Improves Hyperlipidemia and Insulin Resistance by Inhibiting SREBP to Decrease Lipid Biosynthesis. Cell Metabolism, 2012, 16, 213-225.	16.2	111
21	SREBP: a novel therapeutic target. Acta Biochimica Et Biophysica Sinica, 2013, 45, 2-10.	2.0	110
22	Intracellular Cholesterol Transport by Sterol Transfer Proteins at Membrane Contact Sites. Trends in Biochemical Sciences, 2019, 44, 273-292.	7.5	109
23	A <i>LIMA1</i> variant promotes low plasma LDL cholesterol and decreases intestinal cholesterol absorption. Science, 2018, 360, 1087-1092.	12.6	104
24	The biogenesis of lipid droplets: Lipids take center stage. Progress in Lipid Research, 2019, 75, 100989.	11.6	104
25	Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Research, 2016, 26, 1099-1111.	12.0	101
26	Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene. Nature Communications, 2019, 10, 623.	12.8	95
27	The N-terminal Domain of NPC1L1 Protein Binds Cholesterol and Plays Essential Roles in Cholesterol Uptake. Journal of Biological Chemistry, 2011, 286, 25088-25097.	3.4	93
28	Routes and mechanisms of postâ€endosomal cholesterol trafficking: A story that never ends. Traffic, 2017, 18, 209-217.	2.7	91
29	Ufd1 Is a Cofactor of gp78 and Plays a Key Role in Cholesterol Metabolism by Regulating the Stability of HMG-CoA Reductase. Cell Metabolism, 2007, 6, 115-128.	16.2	82
30	Cholesterol and fatty acids regulate cysteine ubiquitylation of ACAT2 through competitive oxidation. Nature Cell Biology, 2017, 19, 808-819.	10.3	81
31	The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1. Nature Medicine, 2014, 20, 80-86.	30.7	77
32	Identification of Cholesterol 25-Hydroxylase as a Novel Host Restriction Factor and a Part of the Primary Innate Immune Responses against Hepatitis C Virus Infection. Journal of Virology, 2015, 89, 6805-6816.	3.4	76
33	Niemann–Pick C1-Like 1 and cholesterol uptake. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 964-972.	2.4	69
34	Ubiquitination of 3-Hydroxy-3-methylglutaryl-CoA Reductase in Permeabilized Cells Mediated by Cytosolic E1 and a Putative Membrane-bound Ubiquitin Ligase. Journal of Biological Chemistry, 2004, 279, 28798-28806.	3.4	68
35	PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus. Nature Communications, 2015, 6, 8100.	12.8	68
36	Cholesterol transport through the peroxisome-ER membrane contacts tethered by PI(4,5)P2 and extended synaptotagmins. Science China Life Sciences, 2019, 62, 1117-1135.	4.9	64

#	Article	IF	CITATIONS
37	Myosin Vb controls biogenesis of post-Golgi Rab10 carriers during axon development. Nature Communications, 2013, 4, 2005.	12.8	63
38	Endogenous sterol intermediates of the mevalonate pathway regulate HMGCR degradation and SREBP-2 processing. Journal of Lipid Research, 2019, 60, 1765-1775.	4.2	62
39	Membrane topology of human NPC1L1, a key protein in enterohepatic cholesterol absorption. Journal of Lipid Research, 2009, 50, 1653-1662.	4.2	60
40	Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMC-CoA reductase. Journal of Biological Chemistry, 2018, 293, 4047-4055.	3.4	59
41	Molecular Characterization of the NPC1L1 Variants Identified from Cholesterol Low Absorbers. Journal of Biological Chemistry, 2011, 286, 7397-7408.	3.4	58
42	Inhibition of the sterol regulatory elementâ€binding protein pathway suppresses hepatocellular carcinoma by repressing inflammation in mice. Hepatology, 2017, 65, 1936-1947.	7.3	57
43	Requirement of Myosin Vb·Rab11a·Rab11-FIP2 Complex in Cholesterol-regulated Translocation of NPC1L1 to the Cell Surface. Journal of Biological Chemistry, 2009, 284, 22481-22490.	3.4	56
44	TNF-alpha stimulates the ACAT1 expression in differentiating monocytes to promote the CE-laden cell formation. Journal of Lipid Research, 2009, 50, 1057-1067.	4.2	55
45	A specific cholesterol metabolic pathway is established in a subset of HCCs for tumor growth. Journal of Molecular Cell Biology, 2013, 5, 404-415.	3.3	54
46	Isolation of Mutant Cells Lacking Insig-1 through Selection with SR-12813, an Agent That Stimulates Degradation of 3-Hydroxy-3-methylglutaryl-Coenzyme A Reductase. Journal of Biological Chemistry, 2004, 279, 43136-43147.	3.4	51
47	Human acyl-CoA:cholesterol acyltransferase 2 gene expression in intestinal Caco-2 cells and in hepatocellular carcinoma. Biochemical Journal, 2006, 394, 617-626.	3.7	51
48	PIP4K2A regulates intracellular cholesterol transport through modulating PI(4,5)P2 homeostasis. Journal of Lipid Research, 2018, 59, 507-514.	4.2	50
49	The interplay of Patched, Smoothened and cholesterol in Hedgehog signaling. Current Opinion in Cell Biology, 2019, 61, 31-38.	5.4	48
50	The GARP Complex Is Involved in Intracellular Cholesterol Transport via Targeting NPC2 to Lysosomes. Cell Reports, 2017, 19, 2823-2835.	6.4	44
51	Gpnmb secreted from liver promotes lipogenesis in white adipose tissue and aggravates obesity and insulin resistance. Nature Metabolism, 2019, 1, 570-583.	11.9	42
52	AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease. Journal of Lipid Research, 2017, 58, 512-518.	4.2	40
53	Degradation versus Inhibition: Development of Proteolysis-Targeting Chimeras for Overcoming Statin-Induced Compensatory Upregulation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase. Journal of Medicinal Chemistry, 2020, 63, 4908-4928.	6.4	38
54	The Small GTPase Cdc42 Interacts with Niemann-Pick C1-like 1 (NPC1L1) and Controls Its Movement from Endocytic Recycling Compartment to Plasma Membrane in a Cholesterol-dependent Manner. Journal of Biological Chemistry, 2011, 286, 35933-35942.	3.4	33

#	Article	IF	CITATIONS
55	Disruption of the ERLIN–TM6SF2–APOB complex destabilizes APOB and contributes to non-alcoholic fatty liver disease. PLoS Genetics, 2020, 16, e1008955.	3.5	32
56	POST1/C12ORF49 regulates the SREBP pathway by promoting site-1 protease maturation. Protein and Cell, 2021, 12, 279-296.	11.0	31
57	Deficiency of Histone Methyltransferase SET Domainâ€Containing 2 in Liver Leads to Abnormal Lipid Metabolism and HCC. Hepatology, 2021, 73, 1797-1815.	7.3	31
58	The Clathrin Adaptor Proteins ARH, Dab2, and Numb Play Distinct Roles in Niemann-Pick C1-Like 1 Versus Low Density Lipoprotein Receptor-mediated Cholesterol Uptake. Journal of Biological Chemistry, 2014, 289, 33689-33700.	3.4	30
59	Organization of Human ACAT-2 Gene and Its Cell-Type-Specific Promoter Activity. Biochemical and Biophysical Research Communications, 2001, 282, 580-588.	2.1	25
60	Discovery of an insulinâ€induced gene binding compound that ameliorates nonalcoholic steatohepatitis by inhibiting sterol regulatory elementâ€binding protein–mediated lipogenesis. Hepatology, 2022, 76, 1466-1481.	7.3	24
61	Ablation of Plasma Prekallikrein Decreases Low-Density Lipoprotein Cholesterol by Stabilizing Low-Density Lipoprotein Receptor and Protects Against Atherosclerosis. Circulation, 2022, 145, 675-687.	1.6	22
62	Myeloid Acat1/Soat1 KO attenuates pro-inflammatory responses in macrophages and protects against atherosclerosis in a model of advanced lesions. Journal of Biological Chemistry, 2019, 294, 15836-15849.	3.4	20
63	Schnyder corneal dystrophy-associated UBIAD1 mutations cause corneal cholesterol accumulation by stabilizing HMG-CoA reductase. PLoS Genetics, 2019, 15, e1008289.	3.5	18
64	Cholesterylation of Smoothened is a calcium-accelerated autoreaction involving an intramolecular ester intermediate. Cell Research, 2022, 32, 288-301.	12.0	18
65	Ubiquitin Ligases in Cholesterol Metabolism. Diabetes and Metabolism Journal, 2014, 38, 171.	4.7	16
66	RNA secondary structures located in the interchromosomal region of human ACAT1 chimeric mRNA are required to produce the 56-kDa isoform. Cell Research, 2008, 18, 921-936.	12.0	14
67	Induction of senescence-associated secretory phenotype underlies the therapeutic efficacy of PRC2 inhibition in cancer. Cell Death and Disease, 2022, 13, 155.	6.3	14
68	Production of ACAT1 56-kDa isoform in human cells via trans-splicing involving the ampicillin resistance gene. Cell Research, 2013, 23, 1007-1024.	12.0	13
69	IDOL G51S Variant Is Associated With High Blood Cholesterol and Increases Low-Density Lipoprotein Receptor Degradation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2468-2479.	2.4	13
70	Hypercholesterolemia risk-associated GPR146 is an orphan G-protein coupled receptor that regulates blood cholesterol levels in humans and mice. Cell Research, 2020, 30, 363-365.	12.0	12
71	Competitive oxidation and ubiquitylation on the evolutionarily conserved cysteine confer tissue-specific stabilization of Insig-2. Nature Communications, 2020, 11, 379.	12.8	12
72	The non-canonical NF-κB pathway promotes NPC2 expression and regulates intracellular cholesterol trafficking. Science China Life Sciences, 2018, 61, 1222-1232.	4.9	11

#	Article	IF	CITATIONS
73	Synthesis of heterocyclic ring-fused analogs of HMG499 as novel degraders of HMG-CoA reductase that lower cholesterol. European Journal of Medicinal Chemistry, 2022, 236, 114323.	5.5	11
74	Lowering low-density lipoprotein cholesterol: from mechanisms to therapies. , 2022, 1, 25-38.		10
75	Numb directs the subcellular localization of excitatory amino acid transporter type 3 through binding the YXNXXF motif. Journal of Cell Science, 2016, 129, 3104-14.	2.0	8
76	SUMOylation of the ubiquitin ligase IDOL decreases LDL receptor levels and is reversed by SENP1. Journal of Biological Chemistry, 2021, 296, 100032.	3.4	8
77	The 3-beta-hydroxysteroid-Delta(8), Delta(7)-isomerase EBP inhibits cholesterylation of Smoothened. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 159041.	2.4	7
78	Forward Genetic Screening for Regulators Involved in Cholesterol Synthesis Using Validation-Based Insertional Mutagenesis. PLoS ONE, 2014, 9, e112632.	2.5	6
79	Measurement of Cholesterol Transfer from Lysosome to Peroxisome Using an In Vitro Reconstitution Assay. Methods in Molecular Biology, 2017, 1583, 141-161.	0.9	4
80	Analysis of Protein Cholesterylation by Biorthogonal Labeling. Methods in Molecular Biology, 2022, 2374, 27-36.	0.9	4
81	Peroxisomes in intracellular cholesterol transport: from basic physiology to brain pathology. , 2021, 1, .		3
82	Two Human ACAT2 mRNA Variants Produced by Alternative Splicing and Coding for Novel Isoenzymes. Acta Biochimica Et Biophysica Sinica, 2005, 37, 797-806.	2.0	2
83	Identification and characterization of NPC1L1 variants in Uygur and Kazakh with extreme low-density lipoprotein cholesterol. Biochemical and Biophysical Research Communications, 2016, 479, 628-635.	2.1	2
84	Hitching a ride to the top: peroxisomes fuel cilium with cholesterol. Science China Life Sciences, 2021, 64, 478-481.	4.9	2
85	A special issue on 'Metabolism'. Acta Biochimica Et Biophysica Sinica, 2013, 45, 1-1.	2.0	1
86	Preparation of an anti-Cdx-2 antibody for analysis of different species Cdx-2 binding to acat2 promoter. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica Et Biophysica Sinica, 2003, 35, 6-12.	0.1	1
87	Dissecting NPC1L1-mediated cholesterol absorption. Future Lipidology, 2008, 3, 481-484.	0.5	0

Tocotrienols and the Regulation of Cholesterol Biosynthesis. , 2008, , 237-256.