
Jingfeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5457366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac resynchronization therapy via left bundle branch pacing vs. optimized biventricular pacing with adaptive algorithm in heart failure with left bundle branch block: a prospective, multi-centre, observational study. Europace, 2022, 24, 807-816.	1.7	65
2	Procedure-Related Complications of Left Bundle Branch Pacing: A Single-Center Experience. Frontiers in Cardiovascular Medicine, 2021, 8, 645947.	2.4	51
3	The feasibility and safety of left bundle branch pacing vs. right ventricular pacing after mid-long-term follow-up: a single-centre experience. Europace, 2020, 22, ii36-ii44.	1.7	47
4	Left bundle branch area pacing is superior to right ventricular septum pacing concerning depolarizationâ€repolarization reserve. Journal of Cardiovascular Electrophysiology, 2020, 31, 313-322.	1.7	43
5	Qiliqiangxin attenuates hypoxiaâ€induced injury in primary ratÂcardiac microvascular endothelial cells via promoting HIFâ€Iαâ€dependent glycolysis. Journal of Cellular and Molecular Medicine, 2018, 22, 2791-2803.	3.6	31
6	<i>Qiliqiangxin</i> protects against anoxic injury in cardiac microvascular endothelial cells <i>via</i> NRGâ€1/ErbBâ€Pl3K/Akt/mTOR pathway. Journal of Cellular and Molecular Medicine, 2017, 21, 1905-1914.	3.6	30
7	Effect of Cardiac Resynchronization Therapy on Myocardial Fibrosis and Relevant Cytokines in a Canine Model With Experimental Heart Failure. Journal of Cardiovascular Electrophysiology, 2017, 28, 438-445.	1.7	17
8	Current of injury is an indicator of lead depth and performance during left bundle branch pacing lead implantation. Heart Rhythm, 2022, 19, 1281-1288.	0.7	15
9	Angiotensin II induces apoptosis of cardiac microvascular endothelial cells via regulating PTP1B/PI3K/Akt pathway. In Vitro Cellular and Developmental Biology - Animal, 2019, 55, 801-811.	1.5	14
10	Patientâ€ŧailored SyncAV algorithm: A novel strategy to improve synchrony and acute hemodynamic response in heart failure patients treated by cardiac resynchronization therapy. Journal of Cardiovascular Electrophysiology, 2020, 31, 512-520.	1.7	14
11	<i>Qiliqiangxin</i> Enhances Cardiac Glucose Metabolism and Improves Diastolic Function in Spontaneously Hypertensive Rats. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-11.	1.2	13
12	Elevated pulmonary artery pressure predicts poor outcome after cardiac resynchronization therapy. Journal of Interventional Cardiac Electrophysiology, 2014, 40, 171-178.	1.3	11
13	Transvenous cardiac implantable electronic device implantation in patients with persistent left superior vena cava in a tertiary center. Journal of Interventional Cardiac Electrophysiology, 2018, 53, 255-262.	1.3	11
14	Impact of Genetic Variation in Aldehyde Dehydrogenase 2 and Alcohol Consumption on Coronary Artery Lesions in Chinese Patients with Stable Coronary Artery Disease. International Heart Journal, 2018, 59, 689-694.	1.0	11
15	The mechanical effects of CRT promoting autophagy via mitochondrial calcium uniporter downâ€regulation and mitochondrial dynamics alteration. Journal of Cellular and Molecular Medicine, 2019, 23, 3833-3842.	3.6	10
16	Prediction of response after cardiac resynchronization therapy with machine learning. International Journal of Cardiology, 2021, 344, 120-126.	1.7	10
17	Qiliqiangxin improves cardiac function and attenuates cardiac remodeling in rats with experimental myocardial infarction. International Journal of Clinical and Experimental Pathology, 2015, 8, 6596-606.	0.5	10
18	Comparison between cardiac resynchronization therapy with and without defibrillator on long-term mortality: A propensity score matched analysis. Journal of Cardiology, 2020, 75, 432-438.	1.9	9

JINGFENG WANG

#	Article	IF	CITATIONS
19	<i>Qiliqiangxin</i> Improves Cardiac Function through Regulating Energy Metabolism via HIF-1 <i>α</i> -Dependent and Independent Mechanisms in Heart Failure Rats after Acute Myocardial Infarction. BioMed Research International, 2020, 2020, 1-16.	1.9	9
20	Qiliqiangxin alleviates Ang II-induced CMECs apoptosis by downregulating autophagy via the ErbB2-AKT-FoxO3a axis. Life Sciences, 2021, 273, 119239.	4.3	8
21	Differential microRNA expression profiles and bioinformatics analysis between young and aging spontaneously hypertensive rats. International Journal of Molecular Medicine, 2018, 41, 1584-1594.	4.0	7
22	Cessation of pacing in superâ€responders of cardiac resynchronization therapy: A randomized controlled trial. Journal of Cardiovascular Electrophysiology, 2018, 29, 1548-1555.	1.7	7
23	Evaluation of electrophysiological characteristics and ventricular synchrony: An intrapatientâ€controlled study during Hisâ€Purkinje conduction system pacingÂversus right ventricular pacing. Clinical Cardiology, 2022, 45, 723-732.	1.8	7
24	Effects of Adiponectin on Diastolic Function in Mice Underwent Transverse Aorta Constriction. Journal of Cardiovascular Translational Research, 2020, 13, 225-237.	2.4	6
25	Qiliqiangxin Prescription Promotes Angiogenesis of Hypoxic Primary Rat Cardiac Microvascular Endothelial Cells via Regulating miR-21 Signaling. Current Pharmaceutical Design, 2021, 27, 2966-2974.	1.9	6
26	Angiotensin II Increases HMGB1 Expression in the Myocardium Through AT1 and AT2 Receptors When Under Pressure Overload. International Heart Journal, 2021, 62, 162-170.	1.0	5
27	Troponin T elevation after permanent pacemaker implantation. Journal of Interventional Cardiac Electrophysiology, 2017, 49, 211-218.	1.3	4
28	Comparison of single-coil lead versus dual-coil lead of implantable cardioverter defibrillator on lead-related venous complications in a canine model. Journal of Interventional Cardiac Electrophysiology, 2018, 52, 195-201.	1.3	3
29	Protective effects of cardiac resynchronization therapy in a canine model with experimental heart failure by improving mitochondrial function: a mitochondrial proteomics study. Journal of Interventional Cardiac Electrophysiology, 2021, 61, 123-135.	1.3	3
30	Pericardial effusion caused by accidently placing a Micra transcatheter pacing system into the coronary sinus. BMC Cardiovascular Disorders, 2021, 21, 461.	1.7	3
31	Impact of interlead distance on immediate and mid-term response to cardiac resynchronization therapy. Scandinavian Cardiovascular Journal, 2013, 47, 263-270.	1.2	2
32	Pacing lead is more easily located at RVOT septum in patients with severe tricuspid regurgitation. Acta Cardiologica, 2016, 71, 730-736.	0.9	1
33	Benefits of Cardiac Resynchronization Therapy in an Asynchronous Heart Failure Model Induced by Left Bundle Branch Ablation and Rapid Pacing. Journal of Visualized Experiments, 2017, , .	0.3	1
34	Rate-dependent Loss of Capture during Ventricular Pacing. Internal Medicine, 2015, 54, 2449-2451.	0.7	0
35	Atrial transseptal left ventricular lead implantation for cardiac resynchronization therapy using arteriovenous loop technique. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 866-869.	1.2	0